Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1994_56_3_a9, author = {S. Yu. Sadov}, title = {On a~dynamic system arising from a finite-dimensional approximation of the {Schr\"odinger} equation}, journal = {Matemati\v{c}eskie zametki}, pages = {118--133}, publisher = {mathdoc}, volume = {56}, number = {3}, year = {1994}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1994_56_3_a9/} }
TY - JOUR AU - S. Yu. Sadov TI - On a~dynamic system arising from a finite-dimensional approximation of the Schr\"odinger equation JO - Matematičeskie zametki PY - 1994 SP - 118 EP - 133 VL - 56 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1994_56_3_a9/ LA - ru ID - MZM_1994_56_3_a9 ER -
S. Yu. Sadov. On a~dynamic system arising from a finite-dimensional approximation of the Schr\"odinger equation. Matematičeskie zametki, Tome 56 (1994) no. 3, pp. 118-133. http://geodesic.mathdoc.fr/item/MZM_1994_56_3_a9/
[1] Belov V. V., Maslov V. P., “Kvaziklassicheskie traektorno-kogerentnye sostoyaniya v kvantovoi mekhanike s kalibrovochnymi polyami”, DAN SSSR, 311:4 (1990), 849–854 | MR
[2] Namiot V. A., Finkelshtein V. Yu., “Metod psevdokogerentnykh sostoyanii v nelineinykh kvantovykh sistemakh”, ZhETF, 77:3 (1979), 884–898
[3] Arnold V. I., Givental A. B., “Simplekticheskaya geometriya”, Itogi nauki i tekhniki. Sovr. probl. matem. Fund. napr., 4, VINITI, M., 1985, 5–135
[4] Bryuno A. D., Lokalnyi metod nelineinogo analiza differentsialnykh uravnenii, Nauka, M., 1979
[5] Bryuno A. D., “Bifurkatsii periodicheskikh reshenii v simmetrichnom sluchae kratnoi pary mnimykh sobstvennykh znachenii”, Chislennoe reshenie obyknovennykh differentsialnykh uravnenii, Inst. prikl. matem. AN SSSR, M., 1988, 161–176 | MR | Zbl
[6] Bryuno A. D., “Analiz sistemy na tsentralnom mnogoobrazii”, VII Vsesoyuznaya konferentsiya “Kachestvennaya teoriya differentsialnykh uravnenii”, Tezisy dokladov, Riga, 1989, 43