Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1994_56_3_a8, author = {V. A. Rodin}, title = {Strong means and the oscillation of multiple {Fourier--Walsh} series}, journal = {Matemati\v{c}eskie zametki}, pages = {102--117}, publisher = {mathdoc}, volume = {56}, number = {3}, year = {1994}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1994_56_3_a8/} }
V. A. Rodin. Strong means and the oscillation of multiple Fourier--Walsh series. Matematičeskie zametki, Tome 56 (1994) no. 3, pp. 102-117. http://geodesic.mathdoc.fr/item/MZM_1994_56_3_a8/
[1] Kheladze Sh. V., “O raskhodimosti vsyudu ryadov Fure–Uolsha”, Soobsch. AN Gruz., 77:2 (1975), 305–307 | MR
[2] Schipp F., “Bemerkung zur starken Summation der Walsh–Fourier–Reihe”, Acta Math. Acad. Scient. Hung., 20:3–4 (1969), 263–274 | DOI | MR | Zbl
[3] Rodin V. A., “Totik's conjecture for Chrestenson and Walsh systems”, Anal. Math., 18 (1992), 295–305 | DOI | MR | Zbl
[4] Rodin V. A., “Prostranstvo VMO i silnye srednie ryadov Fure–Uolsha”, Matem. sb., 182:10 (1991), 1463–1478
[5] Fefferman R., “Bounded mean oscillation on the polydisk”, Annals Math., 110:2 (1979), 395–406 | DOI | MR | Zbl
[6] Rodin V. A., “Pryamougolnaya ostsillyatsiya posledovatelnosti chastnykh summ kratnykh ryadov Fure i otsutstvie VMO-svoistva”, Matem. zametki, 52:2 (1992), 152–154 | MR
[7] Rodin V. A., “Potochechnaya silnaya summiruemost kratnykh ryadov Fure”, Matem. zametki, 50:1 (1991), 148–150 | MR | Zbl
[8] Zigmund A., Trigonometricheskie ryady, T. 2, Mir, M., 1965
[9] Golubov B. I., Efimov A. V., Skvortsov V. A., Ryady i preobrazovaniya Uolsha, Nauka, M., 1991
[10] Gabisoniya O. D., “O tochkakh silnoi summiruemosti ryadov Fure”, Matem. zametki, 14:5 (1973), 615–626 | MR
[11] Sun-Yung A. Chang, Fefferman R., “A continuous version of $H^1$ with BMO on the bidisc”, Annal. Math., 112:1 (1980), 179–201 | DOI | MR