The formula of the regularized trace for the Laplace--Beltrami operator with odd potential on the sphere~$S^2$
Matematičeskie zametki, Tome 56 (1994) no. 1, pp. 71-77.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1994_56_1_a8,
     author = {V. E. Podolskii},
     title = {The formula of the regularized trace for the {Laplace--Beltrami} operator with odd potential on the sphere~$S^2$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {71--77},
     publisher = {mathdoc},
     volume = {56},
     number = {1},
     year = {1994},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1994_56_1_a8/}
}
TY  - JOUR
AU  - V. E. Podolskii
TI  - The formula of the regularized trace for the Laplace--Beltrami operator with odd potential on the sphere~$S^2$
JO  - Matematičeskie zametki
PY  - 1994
SP  - 71
EP  - 77
VL  - 56
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1994_56_1_a8/
LA  - ru
ID  - MZM_1994_56_1_a8
ER  - 
%0 Journal Article
%A V. E. Podolskii
%T The formula of the regularized trace for the Laplace--Beltrami operator with odd potential on the sphere~$S^2$
%J Matematičeskie zametki
%D 1994
%P 71-77
%V 56
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1994_56_1_a8/
%G ru
%F MZM_1994_56_1_a8
V. E. Podolskii. The formula of the regularized trace for the Laplace--Beltrami operator with odd potential on the sphere~$S^2$. Matematičeskie zametki, Tome 56 (1994) no. 1, pp. 71-77. http://geodesic.mathdoc.fr/item/MZM_1994_56_1_a8/

[1] Guillemin V., “Some spectral results for the Laplace operator with potential on the $S^n$-sphere”, Adv. in Math., 27 (1978), 273–286 | DOI | MR | Zbl

[2] Widom H., “The Laplace operator with potential on the 2-sphere”, Adv. in Math., 31 (1979), 63–66 | DOI | MR | Zbl

[3] Sadovnichii V. A., Dubrovskii V. V., “Klassicheskaya formula regulyarizovannogo sleda operatora Laplasa–Beltrami s nechetnym potentsialom na sfere $S^2$”, DAN SSSR, 319:1 (1991)

[4] Lyubishkin V. A., Podolskii V. E., “O summiruemosti regulyarizovannykh sledov differentsialnykh operatorov”, Matem. zametki, 54:2 (1993), 33–38 | MR | Zbl

[5] Teilor M., Psevdodifferentsialnye operatory, Mir, M., 1985

[6] Seelej R. T., “Complex powers of an elliptic operators”, Proc. Symp. in Pure Math., 10, 1967, 288–307

[7] Olver F., Asimptotika i spetsialnye funktsii, Nauka, M., 1990 | Zbl

[8] Titchmarsh E., Teoriya funktsii, GITTL, M., 1951