On the solvability of nonlinear equations of Shr\"odinger type in the class of rapidly oscillating functions
Matematičeskie zametki, Tome 56 (1994) no. 1, pp. 32-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1994_56_1_a3,
     author = {L. A. Kalyakin and S. G. Glebov},
     title = {On the solvability of nonlinear equations of {Shr\"odinger} type in the class of rapidly oscillating functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {32--40},
     publisher = {mathdoc},
     volume = {56},
     number = {1},
     year = {1994},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1994_56_1_a3/}
}
TY  - JOUR
AU  - L. A. Kalyakin
AU  - S. G. Glebov
TI  - On the solvability of nonlinear equations of Shr\"odinger type in the class of rapidly oscillating functions
JO  - Matematičeskie zametki
PY  - 1994
SP  - 32
EP  - 40
VL  - 56
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1994_56_1_a3/
LA  - ru
ID  - MZM_1994_56_1_a3
ER  - 
%0 Journal Article
%A L. A. Kalyakin
%A S. G. Glebov
%T On the solvability of nonlinear equations of Shr\"odinger type in the class of rapidly oscillating functions
%J Matematičeskie zametki
%D 1994
%P 32-40
%V 56
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1994_56_1_a3/
%G ru
%F MZM_1994_56_1_a3
L. A. Kalyakin; S. G. Glebov. On the solvability of nonlinear equations of Shr\"odinger type in the class of rapidly oscillating functions. Matematičeskie zametki, Tome 56 (1994) no. 1, pp. 32-40. http://geodesic.mathdoc.fr/item/MZM_1994_56_1_a3/

[1] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1988

[2] Haberman R., Ren-ji Sun, “Nonlinear cusped caustics for dispersive waves”, Stud. Appl. Math., LXXII:1 (1985), 1–37 | MR

[3] Kalyakin L. A., “Dlinnovolnovye asimptotiki reshenii nelineinykh sistem uravnenii s dispersiei”, DAN SSSR, 288:4 (1986), 809–813 | MR | Zbl

[4] Kalyakin L. A., “Lokalnyi rezonans v slabonelineinoi zadache”, Matem. zametki, 44:5 (1988), 697–699 | MR | Zbl

[5] Kalyakin L. A., “Metod VKB v slabonelineinoi zadache s lokalnym rezonansom”, Asimptoticheskie metody resheniya zadach matematicheskoi fiziki, Ufa, 1989, 56–69 | MR | Zbl

[6] Maslov V. P., Kompleksnyi metod VKB v nelineinykh uravneniyakh, Nauka, M., 1977

[7] Dobrokhotov S. Yu., Zhevandrov P. N., Kuzmina V. M., “Nelokalnye nelineinye uravneniya vetrovykh voln nad nerovnym dnom”, PMM, 51:5 (1987), 798–806 | MR | Zbl

[8] Neu J. C., “Resonantly interacting waves”, SIAM J. Appl. Math., 43:1 (1983), 141–156 | DOI | MR | Zbl

[9] Babich V. M., Buldyrev V. S., Asimptoticheskie metody v zadachakh difraktsii korotkikh voln, Nauka, M., 1972

[10] Maslov V. P., Fedoryuk M. V., Kvaziklassicheskoe priblizhenie v zadachakh kvantovoi mekhaniki, Nauka, M., 1976

[11] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972

[12] Takhtatzhyan L. A., Faddeev L. D., Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986

[13] Vakulenko M. A., “Obosnovanie asimptoticheskoi formuly dlya resheniya vozmuschennogo uravneniya Kleina–Foka–Gordona”, Zapiski nauch. sem. LOMI, 104, Nauka, L., 1981, 84–92 | MR | Zbl

[14] Kalyakin L. A., “Asimptoticheskii raspad odnomernogo volnovogo paketa v nelineinoi dispergiruyuschei srede”, Matem. sb., 132(1740:4 (1987), 470–495 | MR | Zbl

[15] Lyusternik L. A., Sobolev V. I., Elementy funktsionalnogo analiza, Nauka, M., 1965