@article{MZM_1994_56_1_a11,
author = {A. Tungatarov},
title = {Continuous solutions of a generalized {Cauchy{\textendash}Riemann} system with a finite number of singular points},
journal = {Matemati\v{c}eskie zametki},
pages = {105--115},
year = {1994},
volume = {56},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1994_56_1_a11/}
}
A. Tungatarov. Continuous solutions of a generalized Cauchy–Riemann system with a finite number of singular points. Matematičeskie zametki, Tome 56 (1994) no. 1, pp. 105-115. http://geodesic.mathdoc.fr/item/MZM_1994_56_1_a11/
[1] Vekua I. N., Obobschennye analiticheskie funktsii, Fizmatgiz, M., 1959
[2] Mikhailov L. G., Novyi klass osobykh integralnykh uravnenii i ego prilozheniya k differentsialnym uravneniyam s singulyarnymi koeffitsientami, Irfon, Dushanbe, 1963
[3] Usmanov Z. D., “Beskonechno malye izgibaniya poverkhnostei polozhitelnoi krivizny s tochkoi uploscheniya”, Differential Geometry, Banach Center Publications, 12, Warsaw, 1984, 241–272 | MR | Zbl
[4] Usmanov Z. D., “O beskonechno malykh izgibaniyakh poverkhnostei polozhitelnoi krivizny s izolirovannoi tochkoi uploscheniya”, Matem. sb., 83(125):4(12) (1970), 596–615 | MR | Zbl
[5] Tungatarov A., “Ob odnom klasse obobschennykh sistem Koshi–Rimana s konechnym chislom singulyarnykh tochek”, Differents. uravneniya, 22:11 (1986), 2014–2015 | MR | Zbl
[6] Monakhov V. N., Kraevye zadachi so svobodnymi granitsami dlya ellipticheskikh sistem uravnenii, Nauka, Novosibirsk, 1977
[7] Bitsadze A. V., Osnovy teorii analiticheskikh funktsii kompleksnogo peremennogo, Nauka, M., 1984