Continuous solutions of a generalized Cauchy--Riemann system with a finite number of singular points
Matematičeskie zametki, Tome 56 (1994) no. 1, pp. 105-115.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1994_56_1_a11,
     author = {A. Tungatarov},
     title = {Continuous solutions of a generalized {Cauchy--Riemann} system with a finite number of singular points},
     journal = {Matemati\v{c}eskie zametki},
     pages = {105--115},
     publisher = {mathdoc},
     volume = {56},
     number = {1},
     year = {1994},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1994_56_1_a11/}
}
TY  - JOUR
AU  - A. Tungatarov
TI  - Continuous solutions of a generalized Cauchy--Riemann system with a finite number of singular points
JO  - Matematičeskie zametki
PY  - 1994
SP  - 105
EP  - 115
VL  - 56
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1994_56_1_a11/
LA  - ru
ID  - MZM_1994_56_1_a11
ER  - 
%0 Journal Article
%A A. Tungatarov
%T Continuous solutions of a generalized Cauchy--Riemann system with a finite number of singular points
%J Matematičeskie zametki
%D 1994
%P 105-115
%V 56
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1994_56_1_a11/
%G ru
%F MZM_1994_56_1_a11
A. Tungatarov. Continuous solutions of a generalized Cauchy--Riemann system with a finite number of singular points. Matematičeskie zametki, Tome 56 (1994) no. 1, pp. 105-115. http://geodesic.mathdoc.fr/item/MZM_1994_56_1_a11/

[1] Vekua I. N., Obobschennye analiticheskie funktsii, Fizmatgiz, M., 1959

[2] Mikhailov L. G., Novyi klass osobykh integralnykh uravnenii i ego prilozheniya k differentsialnym uravneniyam s singulyarnymi koeffitsientami, Irfon, Dushanbe, 1963

[3] Usmanov Z. D., “Beskonechno malye izgibaniya poverkhnostei polozhitelnoi krivizny s tochkoi uploscheniya”, Differential Geometry, Banach Center Publications, 12, Warsaw, 1984, 241–272 | MR | Zbl

[4] Usmanov Z. D., “O beskonechno malykh izgibaniyakh poverkhnostei polozhitelnoi krivizny s izolirovannoi tochkoi uploscheniya”, Matem. sb., 83(125):4(12) (1970), 596–615 | MR | Zbl

[5] Tungatarov A., “Ob odnom klasse obobschennykh sistem Koshi–Rimana s konechnym chislom singulyarnykh tochek”, Differents. uravneniya, 22:11 (1986), 2014–2015 | MR | Zbl

[6] Monakhov V. N., Kraevye zadachi so svobodnymi granitsami dlya ellipticheskikh sistem uravnenii, Nauka, Novosibirsk, 1977

[7] Bitsadze A. V., Osnovy teorii analiticheskikh funktsii kompleksnogo peremennogo, Nauka, M., 1984