Quasi-modes corresponding to the stable type of conditionally periodic motion
Matematičeskie zametki, Tome 55 (1994) no. 5, pp. 36-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1994_55_5_a3,
     author = {Yu. M. Vorob'ev and V. M. Itskov},
     title = {Quasi-modes corresponding to the stable type of conditionally periodic motion},
     journal = {Matemati\v{c}eskie zametki},
     pages = {36--42},
     publisher = {mathdoc},
     volume = {55},
     number = {5},
     year = {1994},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1994_55_5_a3/}
}
TY  - JOUR
AU  - Yu. M. Vorob'ev
AU  - V. M. Itskov
TI  - Quasi-modes corresponding to the stable type of conditionally periodic motion
JO  - Matematičeskie zametki
PY  - 1994
SP  - 36
EP  - 42
VL  - 55
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1994_55_5_a3/
LA  - ru
ID  - MZM_1994_55_5_a3
ER  - 
%0 Journal Article
%A Yu. M. Vorob'ev
%A V. M. Itskov
%T Quasi-modes corresponding to the stable type of conditionally periodic motion
%J Matematičeskie zametki
%D 1994
%P 36-42
%V 55
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1994_55_5_a3/
%G ru
%F MZM_1994_55_5_a3
Yu. M. Vorob'ev; V. M. Itskov. Quasi-modes corresponding to the stable type of conditionally periodic motion. Matematičeskie zametki, Tome 55 (1994) no. 5, pp. 36-42. http://geodesic.mathdoc.fr/item/MZM_1994_55_5_a3/

[1] Babich V. M., “Sobstvennye funktsii, sosredotochennye vblizi geodezicheskikh”, Zapiski nauch. sem. LOMI, 9, Nauka, L., 1968, 15–63 | Zbl

[2] Ralston J. V., “On the construction of quasimodes associated with stable periodic orbits”, Commun. Math. Phys., 51:1 (1976), 219–242 | DOI | MR | Zbl

[3] Dobrokhotov S. Yu., Maslov V. P., “Nekotorye prilozheniya teorii kompleksnogo rostka k uravneniyam s malym parametrom”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 5, VINITI, M., 1975, 145–207

[4] Maslov V. P., Kompleksnyi metod VKB v nelineinykh uravneniyakh, Nauka, M., 1977

[5] Belov V. V., Dobrokhotov S. Yu., “Kanonicheskii operator Maslova na izotropnykh podmnogoobraziyakh s kompleksnym rostkom i ego prilozheniya v spektralnykh zadachakh”, DAN SSSR, 298:5 (1988), 1037–1042 | Zbl

[6] Belov V. V., Dobrokhotov S. Yu., “Kvaziklassicheskie asimptotiki Maslova”, TMF, 92:2 (1992), 215–254 | MR

[7] Krakhnov A. D., “Sobstvennye funktsii, sosredotochennye v okrestnosti uslovno-periodicheskoi geodezicheskoi”, Metody kachestvennoi teorii differentsialnykh uravnenii, no. 1, GGU, Gorkii, 1975, 75–87

[8] Guillemin V. W., “Symplectic spinors and partial differential equations”, Geom. symplec. phys. meth., Colloq. Intern. C.N.R.S., 237, 1975, 217–252 | MR | Zbl

[9] Karasev M. V., “Svyaznosti nad lagranzhevymi podmnogoobraziyami i nekotorye problemy kvaziklassicheskikh priblizhenii”, Zapiski nauch. sem. LOMI, 172, Nauka, L., 1989, 41–54

[10] Karasev M. V., “Novye asimptotiki i anomalii dlya zadachi kvantovaniya adiabaticheskikh invariantov”, Funktsion. analiz i ego pril., 24:2 (1990), 104–114 | MR | Zbl

[11] Karasev M. V., “Simple Quantization formula”, Symplectic Geom. and Math. Phys., Actes du Colloque en lhonneur de J.-M. Souriau, Birkhäuser, Boston, 1991, 234–244 | MR

[12] Karasev M. V., Vorobjev Yu. M., Hermitian bundles over isotropic submanifolds and correction to Kostant–Souriau quantization rule, Preprint ITO-90-85E, Inst. Theor. Phys., Kiev, 1991

[13] Karasev M. V., Vorobjev Yu. M., Integral representation over isotropic submanifolds and equation of zero curvature, Preprint A. Math. QDS-92-01, MIEM, M., 1992

[14] Karasev M. V., Vorobjev Yu. M., “Connection and excited wavepackets over invariant isotropic torus”, Quantization and coherent states methods, Proc. of XIIth Workshop on Geom. Meth. in Phys. (Bialowieza, Poland, July, 1992), World Scientific, 1993

[15] Vorobev Yu. M., “Kompleksnyi rostok Maslova, porozhdennyi lineinoi svyaznostyu”, Matematicheskie zametki, 48:6 (1990), 29 | MR | Zbl

[16] Valino B., Dobrokhotov S. Yu., Nekhoroshev N. N., “Kompleksnyi rostok v sistemakh s odnoi tsiklicheskoi peremennoi”, UMN, 39:3 (1984), 233–234 | MR | Zbl

[17] Eialiasson L. H., “Flouquet solutions for the 1-Dimensional Quasi-Periodic Schrodinger Equation”, Comm. Math. Phys., 146 (1992), 447–482 | DOI | MR

[18] Johnson R., Moser J., “The rotation number for almost periodic potentials”, Comm. Math. Phys., 84:3 (1982), 403–438 | DOI | MR | Zbl

[19] Dobrokhotov S. Yu., Olive Victor M., “Lissoujoux figures, two-dimensional tori and quasimodes of anharmonic oscillator”, Russ. J. Math. Phys., 1994, no. 2