On the connection of the classical and quantum mechanical completeness of a potential at infinity on complete Riemannian manifolds
Matematičeskie zametki, Tome 55 (1994) no. 4, pp. 65-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1994_55_4_a7,
     author = {I. M. Oleinik},
     title = {On the connection of the classical and quantum mechanical completeness of a potential at infinity on complete {Riemannian} manifolds},
     journal = {Matemati\v{c}eskie zametki},
     pages = {65--73},
     publisher = {mathdoc},
     volume = {55},
     number = {4},
     year = {1994},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1994_55_4_a7/}
}
TY  - JOUR
AU  - I. M. Oleinik
TI  - On the connection of the classical and quantum mechanical completeness of a potential at infinity on complete Riemannian manifolds
JO  - Matematičeskie zametki
PY  - 1994
SP  - 65
EP  - 73
VL  - 55
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1994_55_4_a7/
LA  - ru
ID  - MZM_1994_55_4_a7
ER  - 
%0 Journal Article
%A I. M. Oleinik
%T On the connection of the classical and quantum mechanical completeness of a potential at infinity on complete Riemannian manifolds
%J Matematičeskie zametki
%D 1994
%P 65-73
%V 55
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1994_55_4_a7/
%G ru
%F MZM_1994_55_4_a7
I. M. Oleinik. On the connection of the classical and quantum mechanical completeness of a potential at infinity on complete Riemannian manifolds. Matematičeskie zametki, Tome 55 (1994) no. 4, pp. 65-73. http://geodesic.mathdoc.fr/item/MZM_1994_55_4_a7/

[1] Sears D. B., “Note on uniqueness oof Green functions”, Canad. Journ. Math., 2 (1950), 314–325 | MR | Zbl

[2] Levitan B. M., “Ob odnoi teoreme Titchmarsha i Siersa”, UMN, 16:4 (1961), 175–178 | MR | Zbl

[3] Ismagilov R. S., “Ob usloviyakh samosopryazhennosti differentsialnykh operatorov vysshikh poryadkov”, DAN SSSR, 142:6 (1962), 1239–1242 | MR | Zbl

[4] Gimadislamov M. G., “Dostatochnye usloviya sovpadeniya minimalnogo i maksimalnogo operatorov v chastnykh proizvodnykh i diskretnosti ikh spektra”, Matem. zametki, 4:3 (1968), 301–313

[5] Rofe-Beketov F. S., “Usloviya samospryazhennosti operatora Shrëdingera”, Matem. zametki, 8:6 (1970), 741–751 | MR | Zbl

[6] Chernoff P., “Essential self-adjointness of powers of generators of hyperbolic equations”, J. Func. Anal., 12:3 (1973), 401–414 | DOI | MR | Zbl

[7] Strichardz R., “Analysis of the Laplacian on the complete Riemannian manifolds”, J. Func. Anal., 52:1 (1983), 48–79 | DOI | MR

[8] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki. T. 2. Analiz Fure. Samosopryazhennost, Mir, M., 1978

[9] Berezin F. A., Shubin M. A., Uravnenie Shrëdingera, Izd-vo MGU, M., 1983

[10] Gaffney M. R., “A special Stoke's theorem for comlete Riemannian manifolds”, Ann. Math., 60:1 (1954), 140–145 | DOI | MR | Zbl

[11] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya. Metody i prilozheniya, Nauka, M., 1986

[12] Chavel I., Eigenvalues in Riemannian Geometry, Academic Press, New York, 1984 | Zbl