Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1994_55_4_a7, author = {I. M. Oleinik}, title = {On the connection of the classical and quantum mechanical completeness of a potential at infinity on complete {Riemannian} manifolds}, journal = {Matemati\v{c}eskie zametki}, pages = {65--73}, publisher = {mathdoc}, volume = {55}, number = {4}, year = {1994}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1994_55_4_a7/} }
TY - JOUR AU - I. M. Oleinik TI - On the connection of the classical and quantum mechanical completeness of a potential at infinity on complete Riemannian manifolds JO - Matematičeskie zametki PY - 1994 SP - 65 EP - 73 VL - 55 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1994_55_4_a7/ LA - ru ID - MZM_1994_55_4_a7 ER -
%0 Journal Article %A I. M. Oleinik %T On the connection of the classical and quantum mechanical completeness of a potential at infinity on complete Riemannian manifolds %J Matematičeskie zametki %D 1994 %P 65-73 %V 55 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_1994_55_4_a7/ %G ru %F MZM_1994_55_4_a7
I. M. Oleinik. On the connection of the classical and quantum mechanical completeness of a potential at infinity on complete Riemannian manifolds. Matematičeskie zametki, Tome 55 (1994) no. 4, pp. 65-73. http://geodesic.mathdoc.fr/item/MZM_1994_55_4_a7/
[1] Sears D. B., “Note on uniqueness oof Green functions”, Canad. Journ. Math., 2 (1950), 314–325 | MR | Zbl
[2] Levitan B. M., “Ob odnoi teoreme Titchmarsha i Siersa”, UMN, 16:4 (1961), 175–178 | MR | Zbl
[3] Ismagilov R. S., “Ob usloviyakh samosopryazhennosti differentsialnykh operatorov vysshikh poryadkov”, DAN SSSR, 142:6 (1962), 1239–1242 | MR | Zbl
[4] Gimadislamov M. G., “Dostatochnye usloviya sovpadeniya minimalnogo i maksimalnogo operatorov v chastnykh proizvodnykh i diskretnosti ikh spektra”, Matem. zametki, 4:3 (1968), 301–313
[5] Rofe-Beketov F. S., “Usloviya samospryazhennosti operatora Shrëdingera”, Matem. zametki, 8:6 (1970), 741–751 | MR | Zbl
[6] Chernoff P., “Essential self-adjointness of powers of generators of hyperbolic equations”, J. Func. Anal., 12:3 (1973), 401–414 | DOI | MR | Zbl
[7] Strichardz R., “Analysis of the Laplacian on the complete Riemannian manifolds”, J. Func. Anal., 52:1 (1983), 48–79 | DOI | MR
[8] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki. T. 2. Analiz Fure. Samosopryazhennost, Mir, M., 1978
[9] Berezin F. A., Shubin M. A., Uravnenie Shrëdingera, Izd-vo MGU, M., 1983
[10] Gaffney M. R., “A special Stoke's theorem for comlete Riemannian manifolds”, Ann. Math., 60:1 (1954), 140–145 | DOI | MR | Zbl
[11] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya. Metody i prilozheniya, Nauka, M., 1986
[12] Chavel I., Eigenvalues in Riemannian Geometry, Academic Press, New York, 1984 | Zbl