Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1994_55_4_a6, author = {V. I. Nazarov}, title = {Solubility of the {Cauchy} problem for differential equations in scales of {Banach} spaces with completely continuous embeddings}, journal = {Matemati\v{c}eskie zametki}, pages = {54--64}, publisher = {mathdoc}, volume = {55}, number = {4}, year = {1994}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1994_55_4_a6/} }
TY - JOUR AU - V. I. Nazarov TI - Solubility of the Cauchy problem for differential equations in scales of Banach spaces with completely continuous embeddings JO - Matematičeskie zametki PY - 1994 SP - 54 EP - 64 VL - 55 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1994_55_4_a6/ LA - ru ID - MZM_1994_55_4_a6 ER -
%0 Journal Article %A V. I. Nazarov %T Solubility of the Cauchy problem for differential equations in scales of Banach spaces with completely continuous embeddings %J Matematičeskie zametki %D 1994 %P 54-64 %V 55 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_1994_55_4_a6/ %G ru %F MZM_1994_55_4_a6
V. I. Nazarov. Solubility of the Cauchy problem for differential equations in scales of Banach spaces with completely continuous embeddings. Matematičeskie zametki, Tome 55 (1994) no. 4, pp. 54-64. http://geodesic.mathdoc.fr/item/MZM_1994_55_4_a6/
[1] Ovsyannikov L. V., “Singulyarnyi operator v shkale banakhovykh prostranstv”, DAN SSSR, 163:4 (1965), 819–822 | MR | Zbl
[2] Ovsyannikov L. V., “Nelineinaya zadacha Koshi v shkale banakhovykh prostranstv”, DAN SSSR, 200:4 (1971), 789–792 | MR | Zbl
[3] Treves J. F., “An abstract nonlinear Cauchy–Kovalevska theorem”, Trans. Amer. Math. Soc., 150 (1970), 77–92 | DOI | MR | Zbl
[4] Lions J. L., Magenes E., Problémes aux limites non homogénes et applications, V. 3, Dunod, Paris, 1970 | Zbl
[5] Nirenberg L., Lektsii po nelineinomu funktsionalnomu analizu, Mir, M., 1977 | Zbl
[6] Nichida T., “A note on a theorem of Nirenberg”, J. Differ. Geometry, 1977, no. 12, 629–633 | MR
[7] Egorov Yu. V., Lineinye differentsialnye uravneniya glavnogo tipa, Nauka, M., 1984
[8] Radyno Ya. V., “Differentsialnye uravneniya v shkale banakhovykh prostranstv”, Differents. uravneniya, 21:8 (1985), 1412–1422 | MR | Zbl
[9] Nazarov V. I., “O suschestvovanii resheniya lineinogo differentsialno-operatornogo uravneniya s zapazdyvayuschim argumentom v shkale banakhovykh prostranstv Rume”, Funktsionalno-differenntsialnye uravneniya, Perm, 1986, 56–59 | Zbl
[10] Zabreiko P. P., Radyno Ya. V., “Prilozheniya teorii nepodvizhnykh tochek k zadache Koshi dlya uravnenii s ukhudshayuschimi operatorami”, Differents. uravneniya, 23:2 (1987), 345–348 | MR | Zbl
[11] Bukhgeim A. L., Vvedenie v teoriyu obratnykh zadach, Nauka, Novosibirsk, 1988
[12] Nazarov V. I., “O razreshimosti differentsialno-operatornykh uravnenii v shkalakh banakhovykh prostranstv”, 7th Czechoslovak Conf. on Diff. Eq. and Appl. Enlarg., Abstr., Praga, 1989, 193–195
[13] Zabreiko P. P., “Teoremy suschestvovaniya i edinstvennosti resheniya zadachi Koshi dlya differentsialnykh uravnenii s ukhudshayuschimi operatorami”, DAN BSSR, 33:12 (1989), 1068–1071 | MR | Zbl
[14] Nazarov V. I., “Razreshimost zadachi Koshi dlya differentsialnykh uravnenii v shkalakh nepreryvno vlozhennykh banakhovykh prostranstv”, DAN BSSR, 34:6 (1990), 497–500 | MR | Zbl
[15] Burbaki N., Funktsii deistvitelnogo peremennogo, Nauka, M., 1965
[16] Mamedov Ya. D., Odnostoronnie otsenki v usloviyakh issledovaniya reshenii differentsialnykh uravnenii v banakhovykh prostranstvakh, Elm, Baku, 1971 | Zbl
[17] Godunov A. N., “Teorema Peano v banakhovykh prostranstvakh”, Funkts. analiz i ego pril., 9:1 (1975), 59–60 | MR | Zbl
[18] Astaba K., “On Peano's theorem in locally convex spaces”, Studia Math., 33:3 (1982), 213–223
[19] Riordan Dzh., Vvedenie v kombinatornyi analiz, IL, M., 1963