Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1994_55_3_a7, author = {E. Sh. Kurmakaeva}, title = {Dependence of strict homological dimension of $C(\Omega)$ on the topology of $\Omega$}, journal = {Matemati\v{c}eskie zametki}, pages = {76--83}, publisher = {mathdoc}, volume = {55}, number = {3}, year = {1994}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1994_55_3_a7/} }
E. Sh. Kurmakaeva. Dependence of strict homological dimension of $C(\Omega)$ on the topology of $\Omega$. Matematičeskie zametki, Tome 55 (1994) no. 3, pp. 76-83. http://geodesic.mathdoc.fr/item/MZM_1994_55_3_a7/
[1] Khelemskii A. Ya., Gomologiya v banakhovykh i topologicheskikh algebrakh, Izd-vo MGU, M., 1986
[2] Dales H. G., “Automatic continuity: a survey”, Bull. London Math. Soc., 10 (1978), 129–183 | DOI | MR | Zbl
[3] Moran W., “The global dimension of $C(K)$”, J. London Math. Soc. Ser. 2, 17 (1978), 321–329 | DOI | MR
[4] Johnson B. E., “Law dimensional cohomology of Banach algebras”, Operator algebras and Applications, Proc. of Symp. in pure Math., 2, Amer. Math. Soc., Providence, 1982, 253–259 | Zbl
[5] Grothendieck A., Produit tensoorielles topologiques et espaces nucleaires, Mem. Amer. Math. Soc., 166, 1955 | MR
[6] Engelking R., Obschaya topologiya, Mir, M., 1986
[7] Gruenhage G., “Covering properties of $x^2 \setminus \Delta $, $w$-sets and compact subsets of $\Sigma $-products”, Topology Appl., 17:3 (1984), 287–304 | DOI | MR | Zbl