Dependence of strict homological dimension of $C(\Omega)$ on the topology of $\Omega$
Matematičeskie zametki, Tome 55 (1994) no. 3, pp. 76-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1994_55_3_a7,
     author = {E. Sh. Kurmakaeva},
     title = {Dependence of strict homological dimension of $C(\Omega)$ on the topology of $\Omega$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {76--83},
     publisher = {mathdoc},
     volume = {55},
     number = {3},
     year = {1994},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1994_55_3_a7/}
}
TY  - JOUR
AU  - E. Sh. Kurmakaeva
TI  - Dependence of strict homological dimension of $C(\Omega)$ on the topology of $\Omega$
JO  - Matematičeskie zametki
PY  - 1994
SP  - 76
EP  - 83
VL  - 55
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1994_55_3_a7/
LA  - ru
ID  - MZM_1994_55_3_a7
ER  - 
%0 Journal Article
%A E. Sh. Kurmakaeva
%T Dependence of strict homological dimension of $C(\Omega)$ on the topology of $\Omega$
%J Matematičeskie zametki
%D 1994
%P 76-83
%V 55
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1994_55_3_a7/
%G ru
%F MZM_1994_55_3_a7
E. Sh. Kurmakaeva. Dependence of strict homological dimension of $C(\Omega)$ on the topology of $\Omega$. Matematičeskie zametki, Tome 55 (1994) no. 3, pp. 76-83. http://geodesic.mathdoc.fr/item/MZM_1994_55_3_a7/

[1] Khelemskii A. Ya., Gomologiya v banakhovykh i topologicheskikh algebrakh, Izd-vo MGU, M., 1986

[2] Dales H. G., “Automatic continuity: a survey”, Bull. London Math. Soc., 10 (1978), 129–183 | DOI | MR | Zbl

[3] Moran W., “The global dimension of $C(K)$”, J. London Math. Soc. Ser. 2, 17 (1978), 321–329 | DOI | MR

[4] Johnson B. E., “Law dimensional cohomology of Banach algebras”, Operator algebras and Applications, Proc. of Symp. in pure Math., 2, Amer. Math. Soc., Providence, 1982, 253–259 | Zbl

[5] Grothendieck A., Produit tensoorielles topologiques et espaces nucleaires, Mem. Amer. Math. Soc., 166, 1955 | MR

[6] Engelking R., Obschaya topologiya, Mir, M., 1986

[7] Gruenhage G., “Covering properties of $x^2 \setminus \Delta $, $w$-sets and compact subsets of $\Sigma $-products”, Topology Appl., 17:3 (1984), 287–304 | DOI | MR | Zbl