Approximations to the solution of the Weyl and the Dirac equations by means of spherical averages
Matematičeskie zametki, Tome 55 (1994) no. 3, pp. 130-138.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1994_55_3_a12,
     author = {J. Chargoy and R. B. Quezada},
     title = {Approximations to the solution of the {Weyl} and the {Dirac} equations by means of spherical averages},
     journal = {Matemati\v{c}eskie zametki},
     pages = {130--138},
     publisher = {mathdoc},
     volume = {55},
     number = {3},
     year = {1994},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1994_55_3_a12/}
}
TY  - JOUR
AU  - J. Chargoy
AU  - R. B. Quezada
TI  - Approximations to the solution of the Weyl and the Dirac equations by means of spherical averages
JO  - Matematičeskie zametki
PY  - 1994
SP  - 130
EP  - 138
VL  - 55
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1994_55_3_a12/
LA  - ru
ID  - MZM_1994_55_3_a12
ER  - 
%0 Journal Article
%A J. Chargoy
%A R. B. Quezada
%T Approximations to the solution of the Weyl and the Dirac equations by means of spherical averages
%J Matematičeskie zametki
%D 1994
%P 130-138
%V 55
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1994_55_3_a12/
%G ru
%F MZM_1994_55_3_a12
J. Chargoy; R. B. Quezada. Approximations to the solution of the Weyl and the Dirac equations by means of spherical averages. Matematičeskie zametki, Tome 55 (1994) no. 3, pp. 130-138. http://geodesic.mathdoc.fr/item/MZM_1994_55_3_a12/

[1] Quezada R., “Path integral for Dirac equation in momentum space”, Univ. Iagellonicae, Acta Math., 29 (1990)

[2] Gaveau B., Schulman L. S., “Grassmann-valued processes for the Weyl and the Dirac equations”, Phys. Rev. D, 36 (1987), 1135 | DOI | MR | Zbl

[3] Corona G., “A one parameter family of approximations of the solution of the initial Cauchy problem for the Dirac equation”, J. Phys. A: Math. Gen., 22 (1989), 2341 | DOI | MR | Zbl

[4] Konstantinov A. A., Maslov V. P., Chebotarev A. M., “Probabilistic representation of solutions of the Cauchy problem for the Schrödinger, Pauli and Dirac equations”, Russian Math. Surveys, 45:6 (1988), 1–26 | DOI | MR

[5] Nelson E., “Feynman integrals and the Schrödinger equation”, J. Math. Phys., 5 (1964), 332 | DOI | Zbl