Complexity of a determinate algorithm for the discrete logarithm
Matematičeskie zametki, Tome 55 (1994) no. 2, pp. 91-101.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1994_55_2_a7,
     author = {V. I. Nechaev},
     title = {Complexity of a determinate algorithm for the discrete logarithm},
     journal = {Matemati\v{c}eskie zametki},
     pages = {91--101},
     publisher = {mathdoc},
     volume = {55},
     number = {2},
     year = {1994},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1994_55_2_a7/}
}
TY  - JOUR
AU  - V. I. Nechaev
TI  - Complexity of a determinate algorithm for the discrete logarithm
JO  - Matematičeskie zametki
PY  - 1994
SP  - 91
EP  - 101
VL  - 55
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1994_55_2_a7/
LA  - ru
ID  - MZM_1994_55_2_a7
ER  - 
%0 Journal Article
%A V. I. Nechaev
%T Complexity of a determinate algorithm for the discrete logarithm
%J Matematičeskie zametki
%D 1994
%P 91-101
%V 55
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1994_55_2_a7/
%G ru
%F MZM_1994_55_2_a7
V. I. Nechaev. Complexity of a determinate algorithm for the discrete logarithm. Matematičeskie zametki, Tome 55 (1994) no. 2, pp. 91-101. http://geodesic.mathdoc.fr/item/MZM_1994_55_2_a7/

[1] Buchman J., Paulus S., “Algorithms for finite abelian groups”, Number Teoretic and Algebraic Methods in Computer Science, Conference Abstracts, 1993, 22–27

[2] Shanks D., “Class number. A theory of factorization and genera”, Proc. Symp. Pure Math., 20, AMS, 1970, 415–440

[3] Knut D., Iskusstvo programmirovaniya dlya EVM, T. 3, Mir, M., 1978 | Zbl

[4] Lidl R., Niederreiter H., Introduction to finite fields and their applications, Cambrige University Press, Cambrige–New York–Melbourne–Sydney, 1986 | Zbl

[5] Pohlig S. C., Hellman M. E., “An improved algorithm for computing logarithms over $GF(p)$ and its Cryptographic significance”, IEEE. Trans. Information Theory, 24 (1978), 106–110 | DOI | MR | Zbl

[6] Blake J. F., Fuji-Hara R., Mullin R. C., Vanstone S. A., “Computing logarithms in finite fields of characteristic two”, Algebraic Discrete Methods, 5 (1984), 276–285 | DOI | MR | Zbl

[7] Coppersmith D., “Fast evalution of logarithms in fields of characteristic two”, IEEE. Trans. Information Theory, 30 (1984), 587–594 | DOI | MR | Zbl