Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1994_55_1_a8, author = {Yu. A. Peshkichev}, title = {Bounded variation mappings and the method of modules}, journal = {Matemati\v{c}eskie zametki}, pages = {74--78}, publisher = {mathdoc}, volume = {55}, number = {1}, year = {1994}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1994_55_1_a8/} }
Yu. A. Peshkichev. Bounded variation mappings and the method of modules. Matematičeskie zametki, Tome 55 (1994) no. 1, pp. 74-78. http://geodesic.mathdoc.fr/item/MZM_1994_55_1_a8/
[1] Suvorov G. D., Obobschennyi “printsip dliny i ploschadi” v teorii otobrazhenii, Naukova dumka, K., 1985
[2] Stepanoff W. W., “Sur les conditions de l'existence de la différentielle totale”, Matem. sb., 32:3 (1925), 511–527 | Zbl
[3] Khintschine A., “Sur la dérivation asymptotique”, Comptes Rendus Acad. Sci. Paris, 164 (1917), 142–144
[4] Federer G., Geometricheskaya teoriya mery, Nauka, M., 1987 | Zbl
[5] Kudryavtsev L. D., “O $p$-variatsii otobrazhenii i summiruemosti stepenei proizvodnoi Radona-Nikodima”, UMN, 10:2 (1955), 167–174 | MR
[6] Ziemer W. P., “Change of variables for absolutely continuous functions”, Duke Math. J., 36:1 (1969), 171–178 | DOI | MR | Zbl
[7] Peshkichev Yu. A., Kufarev B. P., “Nekotorye geometricheskie svoistva kvazikonformnykh gomeomorfizmov”, Sib. matem. zhurnal, 12:3 (1971), 603–612 | Zbl
[8] Sychev A. V., Moduli i prostranstvennye kvazikonformnye otobrazheniya, Nauka, Novosibirsk, 1983