On the structure of a lie-admissible algebra in the space of G\^ateaux differentiable operators
Matematičeskie zametki, Tome 55 (1994) no. 1, pp. 152-153.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1994_55_1_a17,
     author = {V. M. Savchin},
     title = {On the structure of a lie-admissible algebra in the space of {G\^ateaux} differentiable operators},
     journal = {Matemati\v{c}eskie zametki},
     pages = {152--153},
     publisher = {mathdoc},
     volume = {55},
     number = {1},
     year = {1994},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1994_55_1_a17/}
}
TY  - JOUR
AU  - V. M. Savchin
TI  - On the structure of a lie-admissible algebra in the space of G\^ateaux differentiable operators
JO  - Matematičeskie zametki
PY  - 1994
SP  - 152
EP  - 153
VL  - 55
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1994_55_1_a17/
LA  - ru
ID  - MZM_1994_55_1_a17
ER  - 
%0 Journal Article
%A V. M. Savchin
%T On the structure of a lie-admissible algebra in the space of G\^ateaux differentiable operators
%J Matematičeskie zametki
%D 1994
%P 152-153
%V 55
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1994_55_1_a17/
%G ru
%F MZM_1994_55_1_a17
V. M. Savchin. On the structure of a lie-admissible algebra in the space of G\^ateaux differentiable operators. Matematičeskie zametki, Tome 55 (1994) no. 1, pp. 152-153. http://geodesic.mathdoc.fr/item/MZM_1994_55_1_a17/

[1] Santilli R. M., “Mathematical studies on Lie–admissible algebras”, Hadronic J., 1 (1977), 574–901 | MR

[2] Santilli R. M., “Foundations of theoretical mechanics, II”, Birghoffian generalization of Hamiltonian mechanics, 1983, Springer-Verlag, N. Y. | Zbl

[3] Vainberg M. M., Funktsionalnyi analiz, Prosveschenie, M., 1979

[4] Nashed M. Z., “Differentiability and related properties of nonlinear operators: some aspects of the role of differentials in non–linear functional analysia”, Non-linear functional analysis and application, ed. L. Rall, Academic Press, N.Y., 1971, 103–310 | MR

[5] Margi F., “An operator approach to Poisson brackets”, Ann. Phys., 99 (1976), 196–228 | DOI | MR