Topological classification of spaces of probability measures for co-analytic sets
Matematičeskie zametki, Tome 55 (1994) no. 1, pp. 10-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1994_55_1_a1,
     author = {T. O. Banakh and R. Cauty},
     title = {Topological classification of spaces of probability measures for co-analytic sets},
     journal = {Matemati\v{c}eskie zametki},
     pages = {10--19},
     publisher = {mathdoc},
     volume = {55},
     number = {1},
     year = {1994},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1994_55_1_a1/}
}
TY  - JOUR
AU  - T. O. Banakh
AU  - R. Cauty
TI  - Topological classification of spaces of probability measures for co-analytic sets
JO  - Matematičeskie zametki
PY  - 1994
SP  - 10
EP  - 19
VL  - 55
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1994_55_1_a1/
LA  - ru
ID  - MZM_1994_55_1_a1
ER  - 
%0 Journal Article
%A T. O. Banakh
%A R. Cauty
%T Topological classification of spaces of probability measures for co-analytic sets
%J Matematičeskie zametki
%D 1994
%P 10-19
%V 55
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1994_55_1_a1/
%G ru
%F MZM_1994_55_1_a1
T. O. Banakh; R. Cauty. Topological classification of spaces of probability measures for co-analytic sets. Matematičeskie zametki, Tome 55 (1994) no. 1, pp. 10-19. http://geodesic.mathdoc.fr/item/MZM_1994_55_1_a1/

[1] Fedorchuk V. V., “Veroyatnostnye mery v topologii”, UMN, 46:1 (1991), 41–80 | MR | Zbl

[2] Chigogidze A. Ch., “O prodolzhenii normalnykh funktorov”, Vestnik MGU. Ser. matem., 1984, no. 6, 23–26 | MR | Zbl

[3] Cauty R., “Ensembles absorbants pour les classes projectives”, Fund. Math. (to appear)

[4] Radul T. N., “Pary prostranstv veroyatnostnykh mer, gomeomorfnye $(Q,\Sigma ^\infty )$”, Tezisy VI Tiraspolskogo simpoz. po obschei topologii i prilozheniyam, Chisinau, 1991, 176–177

[5] Banach T., “Descriptive classes of sets and topological functors”, Proc. IX Int. Conf. on Gen. Top. and Appl., Kiev, 1992, 55

[6] Kuratovskii K., Topologiya, T. I, Mir, M., 1966

[7] Torunczyk H., “Concerning locally homotopy negligible sets and characterization of $l_2$-manifolsd”, Fund. Math., 101 (1978), 93–110 | MR | Zbl

[8] Dijkstra J. J., Mill J. van, Modilski J., “The space of infinite-dimentional compacta and other topological copies of $(l_f^2)$”, Pacific J. Math., 152 (1992), 255–273 | MR | Zbl

[9] Schepin E. V., “Funktory i neschetnye stepeni kompaktov”, UMN, 36:3 (1981), 3–61 | MR

[10] Zhuraev T. F., “O funktore $P$ veroyatnostnykh mer”, Vestnik MGU. Ser. matem., 1990, no. 1, 26–30 | MR | Zbl

[11] Bestvina M., Modilski J., “Characterizing certain incomplete infinite-dimensional absolute retracts”, Michigan Math. J., 33:3 (1986), 291–313 | DOI | MR | Zbl

[12] Bennett R., “Countable dense homogeneous spaces”, Fund. Math., 74 (1972), 189–194 | MR

[13] Hurewicz W., “Relative perfekte Teile von Punktmengen und Mengen $(A)$”, Fund. Math., 12 (1928), 78–109

[14] Topsoe F., Hoffman-Jorgensen J., “Analytic sets and their applications”, Analytic sets, Instr. Conf. on Anal. Sets. Univ. Coll., London, 1978

[15] Engelen F. van, Mill J. van, “Borel sets in compact spaces: some Hurewicz type theorems”, Fund. Math., 124 (1984), 271–286 | MR | Zbl

[16] Cauty R., “Characterisation topologique de l'espace des fonction dérivables”, Fund. Math., 138 (1991), 35–58 | MR | Zbl

[17] Bessaga C., Pelczynski A., Selected topics in infinite-dimensional topology, PWN, Warszaw, 1975 | Zbl

[18] Mill J. van., Infinite Dimentional Topology. Prerequi-sites and Introduction, Amsterdam, 1990

[19] Cauty R., Dobrovolski T., “Applying coordinate products to the topological identification of normed spaces”, Trans. Amer. Math. Soc. (to appear)