On ``balayage inwards'' of charges in $\mathbb R^n$
Matematičeskie zametki, Tome 54 (1993) no. 6, pp. 90-112.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1993_54_6_a8,
     author = {B. Yu. Sternin and V. E. Shatalov},
     title = {On ``balayage inwards'' of charges in $\mathbb R^n$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {90--112},
     publisher = {mathdoc},
     volume = {54},
     number = {6},
     year = {1993},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1993_54_6_a8/}
}
TY  - JOUR
AU  - B. Yu. Sternin
AU  - V. E. Shatalov
TI  - On ``balayage inwards'' of charges in $\mathbb R^n$
JO  - Matematičeskie zametki
PY  - 1993
SP  - 90
EP  - 112
VL  - 54
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1993_54_6_a8/
LA  - ru
ID  - MZM_1993_54_6_a8
ER  - 
%0 Journal Article
%A B. Yu. Sternin
%A V. E. Shatalov
%T On ``balayage inwards'' of charges in $\mathbb R^n$
%J Matematičeskie zametki
%D 1993
%P 90-112
%V 54
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1993_54_6_a8/
%G ru
%F MZM_1993_54_6_a8
B. Yu. Sternin; V. E. Shatalov. On ``balayage inwards'' of charges in $\mathbb R^n$. Matematičeskie zametki, Tome 54 (1993) no. 6, pp. 90-112. http://geodesic.mathdoc.fr/item/MZM_1993_54_6_a8/

[1] Khavinson D., Shapiro H. S., The Schwarz potential in $\mathbb R^n$ and Cauchy problem for the Laplace equation, The Royal Inst. of Technology, Stockholm, 1989 | Zbl

[2] Shapiro H. S., The Schwarz function and its generalization to higher dimensions, The Royal Inst. of Technology, Stockholm, 1989

[3] Shapiro H. S., Global Geometric Aspects of Cauchy's Problem for the Laplace Operator, The Royal Inst. of Technology, Stockholm, 1989

[4] Sternin B. Yu., Shatalov V. E., “Continuation solutions to elliptic equations and localization of singularities”, Lect. Notes in Math., 1520, 1992, 237–260 | MR

[5] Sternin B. Yu., Shatalov V. E., “Differentsialnye uravneniya na kompleksno-analiticheskikh mnogoobraziyakh i kanonicheskii operator Maslova”, UMN, 43:3 (1988), 99–124 | MR

[6] Sternin B. Yu., Shatalov V. E., “O nekotorom integralnom preobrazovanii kompleksnykh analiticheskikh funktsii”, DAN SSSR, 280:3 (1985) | MR | Zbl

[7] Sternin B. Yu., Shatalov V. E., “Integralnoe preobrazovanie Laplasa–Radona i ego primenenie k neodnorodnoi zadache Koshi v kompleksnom prostranstve”, Differents. uravneniya, 24:1 (1988) | MR | Zbl

[8] Sternin B. Yu., Shatalov V. E., “Osobennosti differentsialnykh uravnenii na kompleksnykh mnogoobraziyakh i zadacha o “zametanii zaryada””, Geometriya i analiz, Kemerovo, 1991, 22–30

[9] Sternin B. Yu., Shatalov V. E., “O zadache prodolzheniya reshenii dlya ellipticheskikh uravnenii”, Differents. uravneniya, 28:1 (1992), 152–162 | MR

[10] Savina T. V., Sternin B. Yu., Shatalov V. E., “O zakone otrazheniya dlya uravneniya Gelmgoltsa”, DAN, 322:1 (1992), 48–51 | MR | Zbl

[11] Savina T. V., Sternin B. Yu., Shatalov V. E., “O formule otrazheniya dlya uravneniya Gelmgoltsa”, Radiotekhnika i elektronika, 38:2 (1993)

[12] Kyurkchan A. G., Sternin B. Yu., Shatalov V. E., “Osobennosti prodolzheniya reshenii uravnenii Maksvella”, Radiotekhnika i elektronika, 37:5 (1992), 777–796

[13] Kyurkchan A. G., Sternin B. Yu., Shatalov V. E., “Problema prodolzheniya i lokalizatsiya osobennostei dlya reshenii uravnenii Maksvella”, Trudy Shkoly po difraktsii i rasprostraneniyu radiovoln, 1993

[14] Davis P., The Schwarz function and its applications, Carus Math. Monographs, 17, Math. Assoc. of America, 1979

[15] Johnsson G., Global Existence Results for Linear Analytic Partial Differential Equations, The Royal Inst. of Technology, Stockholm, 1989

[16] Johnsson G., Global Existence Results for Certain Linear Holomorphic Cauchy Problem, The Royal Inst. of Technology, Stockholm, 1992

[17] Leray J., “Le calcul différentiel et intégral sur une variété analytique complexe (Problem de Cauchy, III)”, Bull. Soc. Math. France, 87:2 (1959), 81–180 | MR | Zbl

[18] Pham F., Introduction á l'étude topologique des singularités de Landau, Gautier-Villars, Paris, 1967 | Zbl