On the smoothness module of a trigonometrical polynomial in the space $L_p$, $0$
Matematičeskie zametki, Tome 54 (1993) no. 5, pp. 78-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1993_54_5_a8,
     author = {K. V. Runovskii},
     title = {On the smoothness module of a trigonometrical polynomial in the space $L_p$, $0<p<1$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {78--83},
     publisher = {mathdoc},
     volume = {54},
     number = {5},
     year = {1993},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1993_54_5_a8/}
}
TY  - JOUR
AU  - K. V. Runovskii
TI  - On the smoothness module of a trigonometrical polynomial in the space $L_p$, $0
JO  - Matematičeskie zametki
PY  - 1993
SP  - 78
EP  - 83
VL  - 54
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1993_54_5_a8/
LA  - ru
ID  - MZM_1993_54_5_a8
ER  - 
%0 Journal Article
%A K. V. Runovskii
%T On the smoothness module of a trigonometrical polynomial in the space $L_p$, $0
%J Matematičeskie zametki
%D 1993
%P 78-83
%V 54
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1993_54_5_a8/
%G ru
%F MZM_1993_54_5_a8
K. V. Runovskii. On the smoothness module of a trigonometrical polynomial in the space $L_p$, $0
                  
                

[1] Stechkin S. B., “Obobschenie nekotorykh neravenstv Bernshteina”, DAN SSSR, 60:9 (1948), 1511–1514 | MR | Zbl

[2] Korneichuk N. P., Tochnye konstanty v teorii priblizhenii, Nauka, M., 1987

[3] Runovskii K. V., “O priblizhenii “uglom” v prostranstvakh $L_p$, $0

1$”, DAN SSSR, 322:1, 45–47 | MR | Zbl