Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1993_54_5_a10, author = {T. S. Turova}, title = {The asymptotic behavior of an infinite system of connected oscillators}, journal = {Matemati\v{c}eskie zametki}, pages = {99--106}, publisher = {mathdoc}, volume = {54}, number = {5}, year = {1993}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1993_54_5_a10/} }
T. S. Turova. The asymptotic behavior of an infinite system of connected oscillators. Matematičeskie zametki, Tome 54 (1993) no. 5, pp. 99-106. http://geodesic.mathdoc.fr/item/MZM_1993_54_5_a10/
[1] Holley R., Stroock D., “Diffusions on an infiniti dimensional torus”, Funct. Anal., 42:1 (1981), 29–63 | DOI | MR | Zbl
[2] Hoppensteadt F. C., An introduction to the mathematics of neurons, Cambridge University Press, 1986 | MR | Zbl
[3] Gray C. M., Singer W., “Stimulus–specific neuronal oscillations in orientation columns of cat visual cortex”, Proc. Nat. Acad. Sci. USA, 86 (1989), 1698–1702 | DOI
[4] Kryukov V. I., Kazanovich Ya. B., Luzyanina T. B., “A synchronized oscillatory system explains an attention and LTP induced learning deficits”, Open Network Conference (London), 1990, 4–5
[5] Kuramoto Y., Nishikawa I., “Statistical macrodynamics of large dynamical systems. Case of phase transition in oscillator communities”, J. Stat. Phys., 49 (1987), 569–605 | DOI | MR
[6] Daido H., “Intrinsic fluctuations and phase transition in a class of large populations of interacting oscillators”, Stat. Phys., 60:5–6 (1990), 753–800 | DOI | MR | Zbl
[7] Ignatyuk I. A., Malyshev V. A., Turova V. S., “Ustoichivost beskonechnykh sistem stokhasticheskikh uravnenii”, Itogi nauki i tekhn. Teor. veroyatnostei. Mat. statistika. Teor. kibernetika, 27, VINITI, M., 1990, 79–128 | MR
[8] Liptser R. Sh., Shiryaev A. N., Statistika sluchainykh protsessov, Nauka, M., 1974 | MR | Zbl
[9] Malyshev V. A., Minlos R. A., Gibbsovskie sluchainye polya, Nauka, M., 1985 | MR