A priori bounds of solutions of the nonlinear integral convolution type equation and their applications
Matematičeskie zametki, Tome 54 (1993) no. 5, pp. 3-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1993_54_5_a0,
     author = {S. N. Askhabov and M. A. Betilgiriev},
     title = {A priori bounds of solutions of the nonlinear integral convolution type equation and their applications},
     journal = {Matemati\v{c}eskie zametki},
     pages = {3--12},
     publisher = {mathdoc},
     volume = {54},
     number = {5},
     year = {1993},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1993_54_5_a0/}
}
TY  - JOUR
AU  - S. N. Askhabov
AU  - M. A. Betilgiriev
TI  - A priori bounds of solutions of the nonlinear integral convolution type equation and their applications
JO  - Matematičeskie zametki
PY  - 1993
SP  - 3
EP  - 12
VL  - 54
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1993_54_5_a0/
LA  - ru
ID  - MZM_1993_54_5_a0
ER  - 
%0 Journal Article
%A S. N. Askhabov
%A M. A. Betilgiriev
%T A priori bounds of solutions of the nonlinear integral convolution type equation and their applications
%J Matematičeskie zametki
%D 1993
%P 3-12
%V 54
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1993_54_5_a0/
%G ru
%F MZM_1993_54_5_a0
S. N. Askhabov; M. A. Betilgiriev. A priori bounds of solutions of the nonlinear integral convolution type equation and their applications. Matematičeskie zametki, Tome 54 (1993) no. 5, pp. 3-12. http://geodesic.mathdoc.fr/item/MZM_1993_54_5_a0/

[1] Okrasinski W., “On a nonlinear convolution equation occurring in the theory of water percolation”, Annal. Polon. Math., 37:3 (1980), 223–229 | MR | Zbl

[2] Okrasinski W., “On a nonlinear Volterra equation”, Math. Meth. Appl. Sci., 8:3 (1986), 345–350 | MR | Zbl

[3] Askhabov S. N., Karapetyants N. K., Yakubov A. Ya., Nelineinye uravneniya Vinera–Khopfa, Dep. v VINITI 25.11.88., No. 8341-B88 | Zbl

[4] Askhabov S. N., “Integral equations of convolution type with power nonlinearity”, Coll. Math., 62:1 (1991), 49–65 | MR | Zbl

[5] Askhabov S. N., Betilgiriev M. A., “Nonlinear convolution type equations”, Operator equat. and numer. anal., Seminar Analysis. 1989/90, Berlin, 1990, 1–30 | MR | Zbl

[6] Okrasinski W., “On the existence and uniqueness of nonnegative solutions of a certain nonlinear convolution equation”, Annal. Polon. Math., 36:1 (1979), 61–72 | MR | Zbl

[7] Okrasinski W., “Nonlinear Volterra equations and physical applications”, Extracta Math., 4:2 (1989), 51–74 | MR

[8] Abarbanel S. S., “Time dependent temperature distribution in radiating solids”, J. Math. and Phys., 39:4 (1960), 246–257 | MR

[9] Edvards R., Funktsionalnyi analiz, Mir, M., 1969

[10] Krasnoselskii M. A., Polozhitelnye resheniya operatornykh uravnenii, Fizmatgiz, M., 1962