On the arithmetic properties of the values of generalized binomial polynomials
Matematičeskie zametki, Tome 54 (1993) no. 4, pp. 76-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1993_54_4_a7,
     author = {E. M. Matveev},
     title = {On the arithmetic properties of the values of generalized binomial polynomials},
     journal = {Matemati\v{c}eskie zametki},
     pages = {76--81},
     publisher = {mathdoc},
     volume = {54},
     number = {4},
     year = {1993},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1993_54_4_a7/}
}
TY  - JOUR
AU  - E. M. Matveev
TI  - On the arithmetic properties of the values of generalized binomial polynomials
JO  - Matematičeskie zametki
PY  - 1993
SP  - 76
EP  - 81
VL  - 54
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1993_54_4_a7/
LA  - ru
ID  - MZM_1993_54_4_a7
ER  - 
%0 Journal Article
%A E. M. Matveev
%T On the arithmetic properties of the values of generalized binomial polynomials
%J Matematičeskie zametki
%D 1993
%P 76-81
%V 54
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1993_54_4_a7/
%G ru
%F MZM_1993_54_4_a7
E. M. Matveev. On the arithmetic properties of the values of generalized binomial polynomials. Matematičeskie zametki, Tome 54 (1993) no. 4, pp. 76-81. http://geodesic.mathdoc.fr/item/MZM_1993_54_4_a7/

[1] Feldman N. I., Sedmaya problema Gilberta, MGU, M., 1982

[2] Baker A., “The theory of linear forms in logarithms”, Transcendence theory; advances and applications, eds. Baker A., Masser D. W., Academic Press, 1977, 1–27

[3] Rosser J. B., Schoenfeld L., “Approximate formulas for some functions of prime numbers”, Illinois J. Math., 6:1 (1962), 64–94 | MR | Zbl