Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1993_54_4_a2, author = {I. I. Bodrenko}, title = {On $n$-dimensional surfaces in {Euclidean} space $E^{n+p}$ that belong to an $(n+1)$-dimensional plane}, journal = {Matemati\v{c}eskie zametki}, pages = {19--23}, publisher = {mathdoc}, volume = {54}, number = {4}, year = {1993}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1993_54_4_a2/} }
TY - JOUR AU - I. I. Bodrenko TI - On $n$-dimensional surfaces in Euclidean space $E^{n+p}$ that belong to an $(n+1)$-dimensional plane JO - Matematičeskie zametki PY - 1993 SP - 19 EP - 23 VL - 54 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1993_54_4_a2/ LA - ru ID - MZM_1993_54_4_a2 ER -
I. I. Bodrenko. On $n$-dimensional surfaces in Euclidean space $E^{n+p}$ that belong to an $(n+1)$-dimensional plane. Matematičeskie zametki, Tome 54 (1993) no. 4, pp. 19-23. http://geodesic.mathdoc.fr/item/MZM_1993_54_4_a2/
[1] Aminov Yu. A., “Kruchenie dvumernykh poverkhnostei v evklidovykh prostranstvakh”, Ukr. geometr. sb., 17 (1975), 3–14 | Zbl
[2] Kadomtsev S. B., “Issledovaniya nekotorykh svoistv normalnogo krucheniya dvumernoi poverkhnosti v chetyrekhmernom prostranstve”, Itogi nauki i tekhniki. Problemy geometrii, 7, VINITI, M., 1975, 267–278
[3] Fomenko V. T., “Nekotorye svoistva dvumernykh poverkhnostei s nulevym normalnym krucheniem v $E^4$”, Matem. sb., 106:4 (1978), 589–603 | MR | Zbl
[4] Bodrenko I. I., Poverkhnosti $F^n$ v $E^{n+p}$ s nulevym normalnym krucheniem, nesuschie sopryazhennuyu koordinatnuyu set, Dep. v VINITI 18.01.90, No 393 – V 90, VolGU, Volgograd, 1990
[5] Chen B.-Y., Geometry of submanifolds, M. Dekker, New York, 1973 | Zbl