On $n$-dimensional surfaces in Euclidean space $E^{n+p}$ that belong to an $(n+1)$-dimensional plane
Matematičeskie zametki, Tome 54 (1993) no. 4, pp. 19-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1993_54_4_a2,
     author = {I. I. Bodrenko},
     title = {On $n$-dimensional surfaces in {Euclidean} space $E^{n+p}$ that belong to an $(n+1)$-dimensional plane},
     journal = {Matemati\v{c}eskie zametki},
     pages = {19--23},
     publisher = {mathdoc},
     volume = {54},
     number = {4},
     year = {1993},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1993_54_4_a2/}
}
TY  - JOUR
AU  - I. I. Bodrenko
TI  - On $n$-dimensional surfaces in Euclidean space $E^{n+p}$ that belong to an $(n+1)$-dimensional plane
JO  - Matematičeskie zametki
PY  - 1993
SP  - 19
EP  - 23
VL  - 54
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1993_54_4_a2/
LA  - ru
ID  - MZM_1993_54_4_a2
ER  - 
%0 Journal Article
%A I. I. Bodrenko
%T On $n$-dimensional surfaces in Euclidean space $E^{n+p}$ that belong to an $(n+1)$-dimensional plane
%J Matematičeskie zametki
%D 1993
%P 19-23
%V 54
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1993_54_4_a2/
%G ru
%F MZM_1993_54_4_a2
I. I. Bodrenko. On $n$-dimensional surfaces in Euclidean space $E^{n+p}$ that belong to an $(n+1)$-dimensional plane. Matematičeskie zametki, Tome 54 (1993) no. 4, pp. 19-23. http://geodesic.mathdoc.fr/item/MZM_1993_54_4_a2/

[1] Aminov Yu. A., “Kruchenie dvumernykh poverkhnostei v evklidovykh prostranstvakh”, Ukr. geometr. sb., 17 (1975), 3–14 | Zbl

[2] Kadomtsev S. B., “Issledovaniya nekotorykh svoistv normalnogo krucheniya dvumernoi poverkhnosti v chetyrekhmernom prostranstve”, Itogi nauki i tekhniki. Problemy geometrii, 7, VINITI, M., 1975, 267–278

[3] Fomenko V. T., “Nekotorye svoistva dvumernykh poverkhnostei s nulevym normalnym krucheniem v $E^4$”, Matem. sb., 106:4 (1978), 589–603 | MR | Zbl

[4] Bodrenko I. I., Poverkhnosti $F^n$ v $E^{n+p}$ s nulevym normalnym krucheniem, nesuschie sopryazhennuyu koordinatnuyu set, Dep. v VINITI 18.01.90, No 393 – V 90, VolGU, Volgograd, 1990

[5] Chen B.-Y., Geometry of submanifolds, M. Dekker, New York, 1973 | Zbl