On $n$-dimensional surfaces in Euclidean space $E^{n+p}$ that belong to an $(n+1)$-dimensional plane
Matematičeskie zametki, Tome 54 (1993) no. 4, pp. 19-23
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{MZM_1993_54_4_a2,
author = {I. I. Bodrenko},
title = {On $n$-dimensional surfaces in {Euclidean} space $E^{n+p}$ that belong to an $(n+1)$-dimensional plane},
journal = {Matemati\v{c}eskie zametki},
pages = {19--23},
year = {1993},
volume = {54},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1993_54_4_a2/}
}
I. I. Bodrenko. On $n$-dimensional surfaces in Euclidean space $E^{n+p}$ that belong to an $(n+1)$-dimensional plane. Matematičeskie zametki, Tome 54 (1993) no. 4, pp. 19-23. http://geodesic.mathdoc.fr/item/MZM_1993_54_4_a2/
[1] Aminov Yu. A., “Kruchenie dvumernykh poverkhnostei v evklidovykh prostranstvakh”, Ukr. geometr. sb., 17 (1975), 3–14 | Zbl
[2] Kadomtsev S. B., “Issledovaniya nekotorykh svoistv normalnogo krucheniya dvumernoi poverkhnosti v chetyrekhmernom prostranstve”, Itogi nauki i tekhniki. Problemy geometrii, 7, VINITI, M., 1975, 267–278
[3] Fomenko V. T., “Nekotorye svoistva dvumernykh poverkhnostei s nulevym normalnym krucheniem v $E^4$”, Matem. sb., 106:4 (1978), 589–603 | MR | Zbl
[4] Bodrenko I. I., Poverkhnosti $F^n$ v $E^{n+p}$ s nulevym normalnym krucheniem, nesuschie sopryazhennuyu koordinatnuyu set, Dep. v VINITI 18.01.90, No 393 – V 90, VolGU, Volgograd, 1990
[5] Chen B.-Y., Geometry of submanifolds, M. Dekker, New York, 1973 | Zbl