Levy flows on manifolds and operator algebras
Matematičeskie zametki, Tome 54 (1993) no. 4, pp. 3-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1993_54_4_a0,
     author = {D. Applebaum},
     title = {Levy flows on manifolds and operator algebras},
     journal = {Matemati\v{c}eskie zametki},
     pages = {3--11},
     publisher = {mathdoc},
     volume = {54},
     number = {4},
     year = {1993},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1993_54_4_a0/}
}
TY  - JOUR
AU  - D. Applebaum
TI  - Levy flows on manifolds and operator algebras
JO  - Matematičeskie zametki
PY  - 1993
SP  - 3
EP  - 11
VL  - 54
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1993_54_4_a0/
LA  - ru
ID  - MZM_1993_54_4_a0
ER  - 
%0 Journal Article
%A D. Applebaum
%T Levy flows on manifolds and operator algebras
%J Matematičeskie zametki
%D 1993
%P 3-11
%V 54
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1993_54_4_a0/
%G ru
%F MZM_1993_54_4_a0
D. Applebaum. Levy flows on manifolds and operator algebras. Matematičeskie zametki, Tome 54 (1993) no. 4, pp. 3-11. http://geodesic.mathdoc.fr/item/MZM_1993_54_4_a0/

[1] Kunita H., Stochastic Flows and Stochastic Differetial Equations, CUP, 1990

[2] Fujiwara T., Kunita H., “Stochastic Differential Eqations of Jump Type and Lévy Processes in Diffeomorphism Group”, J. Math. Kyoto Univ., 25 (1985), 71–106 | MR | Zbl

[3] Fujiwara T., “Stochastic Differential Equations of Jump Type on Manifolds and Lévy Flows”, J. Math. Kyoto Univ., 31 (1991), 99–119 | MR | Zbl

[4] Applebaum D., Kunita H., “Lévy Flows on Manifolds and Lévy Processes on Lie Groups”, J. Math. Kyoto Univ., 1993 (to appear) | MR

[5] Hunt G. A., “Semigroups of Measures on Lie Groups”, Trans. Amer. Math. Soc., 81 (1956), 93–264 | MR

[6] Holevo A. S., “An Analogue of the Itô Decomposition for Multiplicative Processes with Values in a Lie Group”, LNM, 1442, Springer, 1990, 5–211 | MR

[7] Ikeda N., Watanabe S., Stochastic Differential Equations and Diffusion Processes, Kodansha; North Holland, 1981 | Zbl

[8] Palais R., A Global Formulation of the Lie Theory of Transformation Groups, Mem. Amer. Math. Soc., 22, 1957 | MR | Zbl

[9] Abraham R., Mardsen J. E., Ratiu T., Manifolds, Tensor Analysis and Applications, Addison-Wesley, 1983 ; Springer-Verlag, 1988 | Zbl | Zbl

[10] Applebaum D., Unitary Representations of Lévy Flows of Diffeomorphisms, Preprint, Nottingham Trent University, 1992 | Zbl

[11] Parthasarathy K. R., An Introduction to Quantum Stochastic Calculus, Birkhäuser Verlag, Basel, 1992 | Zbl

[12] Applebaum D., “An Operator Theoretic Approach to Stochastic Flows on Manifolds”, Séminaire de Probabilities, XXVI, LNM, 1526, Springer, 1992, 33–514 | MR

[13] Applebaum D., Spectral Families of Quantum Stochastic Integrals, Preprint, Nottingham Trent University, 1993

[14] Applebaum D., “Deformations of Cocycles, Quantum Lévy Processes and Quantum Stochastic Flows”, Rep. Math. Phys., 1993 (to appear) | MR