Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1993_54_3_a0, author = {V. Z. Grines}, title = {Topological classification of {Morse--Smale} diffeomorphisms with finite set of heteroclinic trajectories on surfaces}, journal = {Matemati\v{c}eskie zametki}, pages = {3--17}, publisher = {mathdoc}, volume = {54}, number = {3}, year = {1993}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1993_54_3_a0/} }
TY - JOUR AU - V. Z. Grines TI - Topological classification of Morse--Smale diffeomorphisms with finite set of heteroclinic trajectories on surfaces JO - Matematičeskie zametki PY - 1993 SP - 3 EP - 17 VL - 54 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1993_54_3_a0/ LA - ru ID - MZM_1993_54_3_a0 ER -
V. Z. Grines. Topological classification of Morse--Smale diffeomorphisms with finite set of heteroclinic trajectories on surfaces. Matematičeskie zametki, Tome 54 (1993) no. 3, pp. 3-17. http://geodesic.mathdoc.fr/item/MZM_1993_54_3_a0/
[1] Smale S., “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73:6 (1967), 113–185 ; Smeil S., “Differentsiruemye dinamicheskie sistemy”, UMN, 25:1 (1970), 113–185 | DOI | MR
[2] Bezdenezhnykh A. N., Grines V. Z., “Realizatsiya gradientopodobnykh diffeomorfizmov dvumernykh mnogoobrazii”, Differentsialnye i integralnye uravneniya, Sb. nauch. tr., ed. N. F. Otrokov, GGU, Gorkii, 1985, 33–37 | MR
[3] Bezdenezhnykh A. N., Grines V. Z., “Diffeomorfizmy s orientiruemymi geterotsiklicheskimi mnozhestvami na dvumernykh mnogoobraziyakh”, Metody kachestvennoi teorii differents. uravnenii, Mezhvuz. temat sb. nauch. tr., ed. E.A. Leontovich-Andronova, Gorkii, 1985, 139–152
[4] Bezdenezhnykh A. N., Grines V. Z., “Dinamicheskie svoistva i topologicheskaya klassifikatsiya gradientopodobnykh diffeomorfizmov na dvumernykh mnogoobraziyakh. 1; 2”, Metody kachestvennoi teorii differents. uravnenii, Mezhvuz. temat sb. nauch. tr., ed. E.A. Leontovich-Andronova, Gorkii, 1985, 139–152; 1987, 24–32 | MR
[5] Borevich E. A., “Usloviya topologicheskoi ekvivalentnosti dvumernykh diffeomorfizmov Morsa–Smeila”, Izv. vuzov. Mat., 1980, no. 11, 12–17 | MR | Zbl
[6] Borevich E. A., “Usloviya topologicheskoi ekvivalentnosti dvumernykh diffeomorfizmov Morsa–Smeila”, Differents. uravneniya, 17:8 (1981), 1481–1482 | MR | Zbl
[7] Borevich E. A., “Topologicheskaya ekvivalentnost dvumernykh diffeomorfizmov Morsa–Smeila”, Izv. vuzov. Mat., 1984, no. 4, 3–6 | MR | Zbl
[8] Borevich E. A., “Dvumernye diffeomorfizmy Morsa–Smeila, imeyuschie orientirovannye geterotsiklicheskie svyazi”, Izv. vuzov. Mat., 1989, no. 9, 77–79 | MR
[9] Umanskii Ya. L., “Neobkhodimye i dostatochnye usloviya topologicheskoi ekvivalentnosti trekhmernykh dinamicheskikh sistem Morsa–Smeila s konechnym chislom osobykh traektorii”, Mat. sb., 181:2 (1990), 212–239
[10] Palis J., “On Mors–Smale dynamical systems”, Topology, 8:4 (1969), 385–404 | DOI | MR
[11] Peixoto M., “On the classification of flows on two-manyfolds.”, Dynamical systems, Proc. Symp. (Univ. of Bahia, Salvador, Brasil, 1971), ed. M. Peixoto, Acad. Press, N.-Y.–London, 1973, 389–419 | MR
[12] Palis J., Smale S., “Structural stawility Theorems”, Global analisis, Proc. Symp. Pure Math. 9th., 14, no. 2, Amer. Math. Soc., Providence, R. I., 1970, 223–231 | MR | Zbl
[13] Medvedev V. S., “Issledovanie povedeniya traektorii kaskada v okrestnosti invariantnogo mnozhestva”, Differents. uravneniya, XIII (1977), 1192–1201
[14] Aranson S. Kh., Grines V. Z., “Kaskady na poverkhnostyakh”, Dinamicheskie sistemy – 9, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 66, VINITI, M., 1991, 148–187 | MR | Zbl