Factorization of an automorphism of a complete boolean algebra into a product of three involutions
Matematičeskie zametki, Tome 54 (1993) no. 2, pp. 79-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1993_54_2_a8,
     author = {V. V. Ryzhikov},
     title = {Factorization of an automorphism of a complete boolean algebra into a product of three involutions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {79--84},
     publisher = {mathdoc},
     volume = {54},
     number = {2},
     year = {1993},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1993_54_2_a8/}
}
TY  - JOUR
AU  - V. V. Ryzhikov
TI  - Factorization of an automorphism of a complete boolean algebra into a product of three involutions
JO  - Matematičeskie zametki
PY  - 1993
SP  - 79
EP  - 84
VL  - 54
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1993_54_2_a8/
LA  - ru
ID  - MZM_1993_54_2_a8
ER  - 
%0 Journal Article
%A V. V. Ryzhikov
%T Factorization of an automorphism of a complete boolean algebra into a product of three involutions
%J Matematičeskie zametki
%D 1993
%P 79-84
%V 54
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1993_54_2_a8/
%G ru
%F MZM_1993_54_2_a8
V. V. Ryzhikov. Factorization of an automorphism of a complete boolean algebra into a product of three involutions. Matematičeskie zametki, Tome 54 (1993) no. 2, pp. 79-84. http://geodesic.mathdoc.fr/item/MZM_1993_54_2_a8/

[1] Anzai H., “Ergodic skew product transformations on the torus”, Osaka Math. Journal, 3:1 (1951), 83–99 | MR | Zbl

[2] Khalmosh P. R., Lektsii po ergodicheskoi teorii, IL, M., 1959

[3] Fathi A., “Le group de transformations de $[\,0,1]$ qui preservent la measure de Lebesque est un groupe simple”, Isr. J. of Math., 29:3–4 (1978), 302–308 | DOI | MR | Zbl

[4] Eigen S. J., “On simplicity of the full group of ergodic transformations”, Isr. J. of Math., 40:3–4 (1981), 345–349 | DOI | MR | Zbl

[5] Ryzhikov V. V., “Predstavlenie preobrazovanii, sokhranyayuschikh meru Lebega, v vide proizvedeniya periodicheskikh preobrazovanii”, Matem. zametki, 38:6 (1985), 860–865 | MR | Zbl