Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1993_54_2_a4, author = {A. G. Meshkov}, title = {Generalized antisymmetry conditions and their applications}, journal = {Matemati\v{c}eskie zametki}, pages = {39--43}, publisher = {mathdoc}, volume = {54}, number = {2}, year = {1993}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1993_54_2_a4/} }
A. G. Meshkov. Generalized antisymmetry conditions and their applications. Matematičeskie zametki, Tome 54 (1993) no. 2, pp. 39-43. http://geodesic.mathdoc.fr/item/MZM_1993_54_2_a4/
[1] Jonson H. H., “A new type of vector field and invariant differential systems”, Proc. Am. Math. Soc., 15 (1964), 675–678 | DOI | MR
[2] Shapovalov V. N., “Simmetriya differentsialnykh uravnenii”, Izv. vuzov. Fizika, 1977, no. 6, 57–70
[3] Volterra V., Theory of functionals and integrodifferential equations, London, 1929
[4] Neter E., “Invariantnye variatsionnye zadachi”, Variatsionnye printsipy mekhaniki, GIFML, M., 1959, 611–630
[5] Vinogradov A. M., “Vysshie simmetrii i zakony sokhraneniya”, Teor.-gruppovye metody v fizike, Trudy Mezhdunarodnogo seminara, T. 2 (Zvenigorod, 24–26 noyab., 1982), Nauka, M., 1983, 414–420
[6] Meshkov A. G., Issledovanie integriruemosti uravnenii nelineinykh strun, I, Preprint, In-t silnotochechnoi elektroniki SO AN SSSR, Tomsk, 1990 | Zbl