Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1993_54_2_a11, author = {V. G. Tkachev}, title = {A sharp lower bound for the first eigenvalue on a minimal surface}, journal = {Matemati\v{c}eskie zametki}, pages = {99--107}, publisher = {mathdoc}, volume = {54}, number = {2}, year = {1993}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1993_54_2_a11/} }
V. G. Tkachev. A sharp lower bound for the first eigenvalue on a minimal surface. Matematičeskie zametki, Tome 54 (1993) no. 2, pp. 99-107. http://geodesic.mathdoc.fr/item/MZM_1993_54_2_a11/
[1] Osserman R., “Isoparametric and related inequalities”, Proc. Symp. Pure Math. (Stanford, Calif.), 27, no. 1, 1973, 207–215
[2] Osserman R., “The isoparametric inequality”, Bull. Amer. Math. Soc., 84:6 (1978), 1182–1238 | DOI | MR | Zbl
[3] Dzhusti E., Minimalnye poverkhnosti i funktsii ogranichennoi variatsii, Mir, M., 1989
[4] Grigoryan A. A., “Uravnenie teploprovodnosti na nekompaktnykh rimanovykh mnogoobraziyakh”, Matem. sb., 182:1 (1991), 55–87
[5] Burago Yu. D., Zalgaller V. A., Geometricheskie neravenstva, Nauka, L., 1980 | Zbl
[6] Polia G., Sege G., Izoparametricheskie neravenstva v matematicheskoi fizike, GIFML, M., 1962
[7] Calabi E., “Quelque application de l'analise complex and surfaces d'aire minima”, Topics in Complex Manifolds, Les Presses de l'Universite de Montreal, 1968
[8] Jorge L. P. M., Xavier F., “A complete minimal surface in $\mathbb R^3 $ between two parallel planes”, Ann. of Math., 112 (1980), 203–206 | DOI | MR | Zbl
[9] Jorge L. P. M., Xavier F., “On existance of the complete bounded minimal surface in $\mathbb R^n$”, Notas E. Comunic. de Mathematica, 1979, no. 101
[10] Cheng S. J., Yau S. T., “Differential equations on Rimannian manifolds and their geometric application”, Comm. Pure and Appl. Math., 28:4 (1975), 333–354 | DOI | MR | Zbl
[11] Kobayasi Sh., Nomidzu K., Osnovaniya differentsialnoi geometrii, T. 2, Nauka, M., 1981