Lax representations with a spectral parameter defined on coverings of hyperelliptic curves
Matematičeskie zametki, Tome 54 (1993) no. 1, pp. 94-109.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1993_54_1_a9,
     author = {Yu. N. Fedorov},
     title = {Lax representations with a spectral parameter defined on coverings of hyperelliptic curves},
     journal = {Matemati\v{c}eskie zametki},
     pages = {94--109},
     publisher = {mathdoc},
     volume = {54},
     number = {1},
     year = {1993},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1993_54_1_a9/}
}
TY  - JOUR
AU  - Yu. N. Fedorov
TI  - Lax representations with a spectral parameter defined on coverings of hyperelliptic curves
JO  - Matematičeskie zametki
PY  - 1993
SP  - 94
EP  - 109
VL  - 54
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1993_54_1_a9/
LA  - ru
ID  - MZM_1993_54_1_a9
ER  - 
%0 Journal Article
%A Yu. N. Fedorov
%T Lax representations with a spectral parameter defined on coverings of hyperelliptic curves
%J Matematičeskie zametki
%D 1993
%P 94-109
%V 54
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1993_54_1_a9/
%G ru
%F MZM_1993_54_1_a9
Yu. N. Fedorov. Lax representations with a spectral parameter defined on coverings of hyperelliptic curves. Matematičeskie zametki, Tome 54 (1993) no. 1, pp. 94-109. http://geodesic.mathdoc.fr/item/MZM_1993_54_1_a9/

[1] Manakov S. V., “Zamechanie ob integrirovanii uravnenii Eilera dinamiki $n$-mernogo tverdogo tela”, Funktsion. analiz i ego pril., 10:4 (1976), 93–94 | MR | Zbl

[2] Perelomov A. M., “Neskolko zamechanii ob integrirovanii uravnenii dvizheniya tverdogo tela v idealnoi zhidkosti”, Funktsion. analiz i ego pril., 15:2 (1981), 83–85 | MR | Zbl

[3] Bobenko A. I., “Uravneniya Eilera na algebrakh $e(3)$ i $so(4)$. Izomorfizm integriruemykh sluchaev”, Funktsion. analiz i ego pril., 20:1 (1986), 64–66 | MR | Zbl

[4] Bolsinov A. V., Integriruemye po Liuvillyu gamiltonovy sistemy na algebrakh Li, Diss. ...kand. fiz.-mat. nauk, MGU, M., 1987

[5] Kostant B., “The solution to generalized Toda lattice and representation theory”, Advances in Math., 34:3 (1979), 195–338 | DOI | MR | Zbl

[6] Clebsch A., “Ueber die Bewegung eines Körpers in einer Flüssigkeit”, Math. Ann., 1870, no. 3, 238–262 | DOI | MR

[7] Brun F., “Rotation krix fix punkt”, Üvers. konigl. svensca. vetenk. Akad. Vorhandl., no. 7, Stockholm, 455–468

[8] Neumann C., “De probleme quodam mechanico, quod ad primam integralium ultra-ellipticoram classem revocatum”, J. reine und angew. Math., 1859, no. 56, 46–63

[9] Gurvits A., Kurant R., Teoriya funktsii, Nauka, M., 1968

[10] Adler M., van Moerbeke P., “Geodesic flows on $so(4)$ and intersections of quadrics”, Proc. Natl. Acad. Sci. USA, 81 (1984), 4613–4616 | DOI | Zbl

[11] Heine L., “Geodesic flows on $so(4)$ and abelian surfaces”, Math. Ann., 263 (1983), 435–472 | DOI | MR

[12] Sklyanin E. K., Borovik A. E., Ob integriruemosti uravneniya Landau-Lifshitsa, Preprint LOMI E–3–79, Leningrad, 1979

[13] Veselov A. P., “Uravnenie Landau-Lifshitsa i integriruemye sistemy klassicheskoi mekhaniki”, DAN SSSR, 270:5 (1983), 1094–1097 | MR

[14] Kotter E., “Uber die Bewegung eines festen Körpers in einer Flüssigkeit. I; II”, Journal fur die reine und angewandte Mathematik, 109 (1892), 51–81; 89–111

[15] Dubrovin B. A., Novikov S. P., Krichiver I. M., “Integriruemye sistemy”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 4, 1985, 179–285 | MR

[16] Volterra V., “Sur la théorie des variations des latitudes”, Acta Math., 22 (1899), 201–357 | DOI