On $(C,\alpha)$-summability almost everywhere of certain sequences
Matematičeskie zametki, Tome 53 (1993) no. 6, pp. 22-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1993_53_6_a2,
     author = {V. F. Gaposhkin},
     title = {On $(C,\alpha)$-summability almost everywhere of certain sequences},
     journal = {Matemati\v{c}eskie zametki},
     pages = {22--32},
     publisher = {mathdoc},
     volume = {53},
     number = {6},
     year = {1993},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1993_53_6_a2/}
}
TY  - JOUR
AU  - V. F. Gaposhkin
TI  - On $(C,\alpha)$-summability almost everywhere of certain sequences
JO  - Matematičeskie zametki
PY  - 1993
SP  - 22
EP  - 32
VL  - 53
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1993_53_6_a2/
LA  - ru
ID  - MZM_1993_53_6_a2
ER  - 
%0 Journal Article
%A V. F. Gaposhkin
%T On $(C,\alpha)$-summability almost everywhere of certain sequences
%J Matematičeskie zametki
%D 1993
%P 22-32
%V 53
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1993_53_6_a2/
%G ru
%F MZM_1993_53_6_a2
V. F. Gaposhkin. On $(C,\alpha)$-summability almost everywhere of certain sequences. Matematičeskie zametki, Tome 53 (1993) no. 6, pp. 22-32. http://geodesic.mathdoc.fr/item/MZM_1993_53_6_a2/

[1] Lorentz G. G., “Borel and Banach properties of methods of summation”, Duke Math. J., 22 (1955), 129–141 | DOI | MR | Zbl

[2] Chow Y. S., Lai T. L., “Limiting behaviour of weighted sums of independent random variables”, Ann. of Probab., 1 (1973), 810–823 | DOI

[3] Moricz F., “On the Cesàro means of orthogonal sequences of random variables”, Ann. of Probab., 11 (1983), 827–832 | DOI | MR | Zbl

[4] Lai T. L., “Summability methods for i.i.d. random variables”, Proc. Amer. Math. Soc., 43 (1974), 253–261 | DOI | MR

[5] Gaposhkin V. F., “On the Cesàro summability of orthogonal sequences”, Analysis Math., 11 (1985), 193–199 | DOI | MR | Zbl

[6] Gaposhkin V. F., “Summation of weakly dependent sequences by Cesàro methods”, Analysis Math., 13 (1987), 269–279 | DOI | MR | Zbl

[7] Deniel Y., Derriennic Y., “Sur la convergence p.s. an sens de Cesaro d'ordre $\alpha,\, 0\alpha 1$, de variables alèatoires i.i.d.”, Probab. Theor. and Rel. Fields, 79 (1988), 629–636 | DOI | MR | Zbl

[8] Rosenthal H. P., “On the subspaces of $L^p(p\geq 2)$ spanned by sequences of independent random vaviables”, Israel J. Math., 9 (1970), 273–303 | DOI

[9] Krengel U., Ergodic theorems, Berlin–N. Y, 1985 | Zbl

[10] Irmisch R., Punktweise ergodensätze fűr $(C,\alpha )$-Verfahren, Thèse, Technischen Hochschule Darmstadt, 1980

[11] Gaposhkin V. F., “Odna teorema o skhodimosti p.v. posledovatelnosti izmerimykh funktsii i ee primeneniya k posledovatelnostyam stokhasticheskikh integralov”, Matem. sb., 101:1 (1977), 3–21 | MR

[12] Gaposhkin V. F., “Ob individualnoi ergodicheskoi teoreme dlya normalnykh operatorov v $L_2$”, Funktsion. analiz i ego pril., 15:1 (1981), 18–22 | MR | Zbl

[13] Gaposhkin V. F., “O summirovanii statsionarnykh posledovatelnostei pochti vsyudu”, Teoriya veroyatnostei i ee primeneniya, 32:1 (1987), 137–142 | MR

[14] Assani I., “On the punctual ergodic theorems for contractions in $L_2$”, Canad. Math. Bull., 30:2 (1987), 134–141 | MR | Zbl

[15] Yurchenko A. M., “Summirovanie kvaziortogonalnykh posledovatelnostei metodami Chezaro”, Analysis Math., 1:3 (1975), 231–237 | DOI | MR

[16] Gaposhkin V. F., “Kriterii u.z.b.ch. dlya statsionarnykh protsessov i odnorodnykh sluchainykh polei”, Teoriya veroyatnostei i ee primeneniya, 22:2 (1977), 295–319 | MR | Zbl

[17] Zigmund A., Trigonometricheskie ryady, T. 1, IL, M., 1965

[18] Deniel Y., “On the a.s. Cesàro-$\alpha $ convergence for stationary or orthogonal random variables”, J. of Theor. Probab., 2:4 (1989), 475–485 | DOI | MR | Zbl