Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1993_53_6_a1, author = {S. S. Volosivets}, title = {Approximation of functions of bounded $p$-variation by means of polynomials of the {Haar} and {Walsh} systems}, journal = {Matemati\v{c}eskie zametki}, pages = {11--21}, publisher = {mathdoc}, volume = {53}, number = {6}, year = {1993}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1993_53_6_a1/} }
TY - JOUR AU - S. S. Volosivets TI - Approximation of functions of bounded $p$-variation by means of polynomials of the Haar and Walsh systems JO - Matematičeskie zametki PY - 1993 SP - 11 EP - 21 VL - 53 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1993_53_6_a1/ LA - ru ID - MZM_1993_53_6_a1 ER -
S. S. Volosivets. Approximation of functions of bounded $p$-variation by means of polynomials of the Haar and Walsh systems. Matematičeskie zametki, Tome 53 (1993) no. 6, pp. 11-21. http://geodesic.mathdoc.fr/item/MZM_1993_53_6_a1/
[1] Wiener N., “The qudratic variation of a function and its Fourier coefficients”, Massachusetts J. of Math., 3 (1924), 72–94
[2] Terekhin A. P., “Priblizhenie funktsii ogranichennoi $p$-variatsii”, Izv. vuzov. Matematika, 1965, no. 2, 171–187 | MR | Zbl
[3] Kashin B. S., Saakyan A. A., Ortogonalnye ryady, Nauka, M., 1984 | Zbl
[4] Love E. R., Young L. C., “On fractional integration by parts”, Proc. London Math. Soc. (2), 44 (1938), 1–35 | DOI | Zbl
[5] Terekhin A. P., “Funktsii ogranichennoi $p$-variatsii s dannym poryadkom modulya $p$-nepreryvnosti”, Matematicheskie zametki, 12:5 (1972), 523–530 | MR | Zbl
[6] Golubov B. I., Efimov A. V., Skvortsov V. A., Ryady i preobrazovaniya Uolsha, Nauka, M., 1987 | Zbl
[7] Ulyanov P. L., “O ryadakh po sisteme Khaara”, Matem. sb., 63:3 (1964), 356–391 | MR | Zbl
[8] Ulyanov P. L., “O absolyutnoi i ravnomernoi skhodimosti ryadov Fure”, Matem. sb., 72:2 (1967), 193–225 | MR | Zbl
[9] Golubov B. I., “O ryadakh Fure nepreryvnykh funktsii po sisteme Khaara”, Izv. AN SSSR. Ser. mat., 28:6 (1964), 1271–1296 | MR | Zbl