On the integrability of logarithmic derivatives of measures
Matematičeskie zametki, Tome 53 (1993) no. 5, pp. 76-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1993_53_5_a8,
     author = {E. P. Krugova},
     title = {On the integrability of logarithmic derivatives of measures},
     journal = {Matemati\v{c}eskie zametki},
     pages = {76--86},
     publisher = {mathdoc},
     volume = {53},
     number = {5},
     year = {1993},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1993_53_5_a8/}
}
TY  - JOUR
AU  - E. P. Krugova
TI  - On the integrability of logarithmic derivatives of measures
JO  - Matematičeskie zametki
PY  - 1993
SP  - 76
EP  - 86
VL  - 53
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1993_53_5_a8/
LA  - ru
ID  - MZM_1993_53_5_a8
ER  - 
%0 Journal Article
%A E. P. Krugova
%T On the integrability of logarithmic derivatives of measures
%J Matematičeskie zametki
%D 1993
%P 76-86
%V 53
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1993_53_5_a8/
%G ru
%F MZM_1993_53_5_a8
E. P. Krugova. On the integrability of logarithmic derivatives of measures. Matematičeskie zametki, Tome 53 (1993) no. 5, pp. 76-86. http://geodesic.mathdoc.fr/item/MZM_1993_53_5_a8/

[1] Fomin S. V., “Differentsiruemye mery v lineinykh prostranstvakh”, Mezhdunarodnyi kongress matematikov, Tezisy kratkikh nauchn. soobsch. Sektsiya 5, Izd-vo MGU, M., 1966, 78–79

[2] Averbukh V. I., Smolyanov O. G., Fomin S. V., “Obobschennye funktsii i differentsialnye uravneniya v lineinykh prostranstvakh. I: Differentsiruemye mery”, Tr. Mosk. mat. ob-va, 24, URSS, M., 1971, 133–174 | MR | Zbl

[3] Bogachev V. I., Smolyanov O. G., “Analiticheskie svoistva beskonechnomernykh raspredelenii”, UMN, 45 (1990), 3–83 | MR | Zbl

[4] Berezanskii Yu. M., Kondratev Yu. G., Spektralnye metody v beskonechnomernom analize, Nauk. dumka, Kiev, 1988 | Zbl

[5] Norin N. V., “Stokhasticheskie integraly i differentsiruemye mery”, Teoriya veroyatn. i ee primen., 32:1 (1987), 114–124 | MR

[6] Albeverio S., Röckner M., “Stochastic differential equations in infinite dimensions: solution via Dirichlet form”, Probab. Theor. Relat. Fields, 89 (1991), 347–386 | DOI | MR | Zbl

[7] Albeverio S., Kusuoka S., Röckner M., “On partial integration in infinite dimensional space and application to Dirichlet forms”, J. London Math. Soc., 42 (1990), 122–136 | DOI | MR | Zbl

[8] Shimomura H., “An aspect of differentialble measures on ${\mathbb R}^\infty $”, Publ. RJMS Kyoto Univ., 23:5 (1987), 791–811 | DOI | MR | Zbl

[9] Yamasaki Y., Hora A., “Differentiable shifts for measures on infinite dimensional spaces”, Publ. RJMS Kyoto Univ., 23 (1987), 275–296 | DOI | MR | Zbl

[10] Kirillov A. I., “O dvukh matematicheskikh problemakh kanonicheskogo kvantovaniya. I; II; III”, Teor. i mat. fiz., 87:1 (1991), 22–23 ; 87:2 (1991), 163–172 ; 91:3 (1992), 377–394 | MR | MR | MR

[11] Uglanov A. V., “Chastnoe gladkikh mer est gladkaya funktsiya”, Izv. VUZov. Matematika, 1989, no. 9, 72–76 | MR | Zbl

[12] Bogachev V. J., Infinite dimensional integration by parts and related problems, Preprint Institut für Angewandte Math. Univ, Bonn, 1992

[13] Skorokhod A. V., Integrirovanie v gilbertovom prostranstve, Nauka, M., 1975

[14] Daletskii Yu. L., Maryanin B. D., “Gladkie mery na beskonechnomernykh mnogoobraziyakh”, DAN SSSR, 285:6 (1985), 1297–1300 | MR