Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1993_53_4_a8, author = {S. G. Lobanov}, title = {Ordinary differential equations with a continuous right-hand side in {Fr\'echet} spaces}, journal = {Matemati\v{c}eskie zametki}, pages = {77--91}, publisher = {mathdoc}, volume = {53}, number = {4}, year = {1993}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1993_53_4_a8/} }
S. G. Lobanov. Ordinary differential equations with a continuous right-hand side in Fr\'echet spaces. Matematičeskie zametki, Tome 53 (1993) no. 4, pp. 77-91. http://geodesic.mathdoc.fr/item/MZM_1993_53_4_a8/
[1] Dieudonne J., “Deux exemples singuliers d'equvations differentielles”, Acta. Sci. Math. Par. B, 12 (1950), 38–40 | MR | Zbl
[2] Godunov A. N., “O teoreme Peano v banakhovykh prostranstvakh”, Funktsion. analiz i ego pril., 9:1 (1975), 59–60 | MR | Zbl
[3] Yorke J. A., “A continuous differential equation in Hilbert space without existence”, Funkcial. Ekvac., 13 (1970), 19–21 | MR | Zbl
[4] Godunov A. N., “Teorema Peano v beskonechnomernom gilbertovom prostranstve neverna dazhe v oslablennoi formulirovke”, Matem. zametki, 15:3 (1974), 467–477 | MR | Zbl
[5] Saint-Raymond J., “Une equation differentielle sans solution”, Initiation Seminar on Analysis, Comm., 2, 1980/81, 2
[6] Binding P., “On infinite-dimensional differential equations”, J. Diff. Equat., 24 (1977), 345–354 | DOI | MR
[7] Garay B. M., “Cross-section of solution funnels in Banach spaces”, Stud. Math., 97:1 (1990), 13–26 | MR | Zbl
[8] Pasika E., “Primer differentsialnogo uravneniya pervogo poryadka v gilbertovom prostranstve bez nepreryvnoi zavisimosti ot nachalnogo usloviya”, Ukr. mat. zhurn., 35:6 (1983), 786–788 | MR | Zbl
[9] Garay B. M., Schäffer J. J., “More on uniqueness without continuous dependence in infinite dimension”, J. Diff. Equat., 64 (1986), 48–50 | DOI | MR | Zbl
[10] De Blasi F. S., Pianigiant G., “Uniqueness for differential equations implies continuous dependence only in finite dimension”, Bull. London Math. Soc., 18:4 (1986), 379–382 | DOI | MR | Zbl
[11] Deimling K., Ordinary differential equations in Banach spaces, Lecture Notes in Math., 596, 1977 | MR | Zbl
[12] Cellina A., “On nonexistence of solution of differential equations in nonreflexive spaces”, Bull. Amer. Math. Soc., 78 (1972), 1069–1072 | DOI | MR | Zbl
[13] Astala K., “On Peano's theorem in locally convex spaces”, Stud. Math., 73:3 (1982), 213–223 | MR | Zbl
[14] Horst E., “Differential equations in Banach spaces: five examples”, Arch. Math. (Basel), 46:5 (1986), 440–444 | MR | Zbl
[15] Szufla S., “Kneser's theorem for weak solutions of ordinary differential equations in reflexsive Banach spaces”, Bull. Acad. Polon. Sci. Math., 26 (1978), 407–413 | MR | Zbl
[16] Millionschikov V. M., “K teorii differentsialnykh uravnenii $\dfrac {dx}{dt}=f(x,t) $ v lokalno vypuklykh prostranstvakh”, DAN SSSR, 131:3 (1960), 510–514
[17] Millionschikov V. M., “K teorii differentsialnykh uravnenii v lokalno vypuklykh prostranstvakh”, Matem. sb., 57(99):4 (1962), 385–406 | MR
[18] Lobanov S. G., “Primer nenormiruemogo prostranstva Freshe, v kotorom vsyakii lineinyi nepreryvnyi operator imeet eksponentu”, UMN, 34:4 (1979), 201–202 | MR | Zbl
[19] Lobanov S. G., “O teoreme Pikara dlya obyknovennykh differentsialnykh uravnenii v lokalno vypuklykh prostranstvakh”, Differents. uravneniya, 26:6 (1990), 1090
[20] Lobanov S. G., “O edinstvennosti reshenii evolyutsionnykh differentsialnykh uravnenii v lokalno vypuklykh prostranstvakh”, Matem. zametki, 26:4 (1979), 523–533 | MR | Zbl
[21] Szufla S., “On the equation $\dot x=f(t,x) $ in locally convex spaces”, Math. Nachr., 118 (1984), 179–185 | DOI | MR | Zbl
[22] Szufla S., “On the application of measure of noncompactness to existence theorem”, Rend. Sem. Math. Univ. Padova, 75 (1986), 1–14 | MR | Zbl
[23] Morales P., “Property of the set of global solutions for the Cauchy problem in a locally convex topological vector space”, Lecture Notes in Math., 1131, 1985, 276–284 | MR
[24] Polewczak J., “Ordinary differential equations on closed subsets of Fréchet spaces with application to fixed point theorems”, Proc. Amer. Math. Soc., 107:4 (1989), 1005–1012 | DOI | MR | Zbl
[25] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | Zbl
[26] Pich A., Yadernye lokalno vypuklye prostranstva, Mir, M., 1967
[27] Bessaga C., Peiczynski A., Rolewicz S., “On diametral approximative dimension and linear homogeneitry of $F$-spaces”, Bull. Acad. Pol. Sci., 9 (1961), 677–683 | MR | Zbl
[28] Dubinsky Ed., “The structure of nuclear Fréchet spaces”, Lecture Notes in Math., 720, 1979 | MR | Zbl
[29] Dugundji J., “An extension of Titze's theorem”, Pacific. J. Math., 1 (1951), 353–367 | MR | Zbl
[30] Lobanov S. G., “Tsepnoe pravilo i ego obraschenie dlya otobrazhenii lokalno vypuklykh prostranstv”, Matem.zametki, 45:1 (1989), 43–55 | MR