On the uniqueness of the Dirichlet problem of the mean curvature equation
Matematičeskie zametki, Tome 53 (1993) no. 4, pp. 53-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1993_53_4_a6,
     author = {V. V. Kurta},
     title = {On the uniqueness of the {Dirichlet} problem of the mean curvature equation},
     journal = {Matemati\v{c}eskie zametki},
     pages = {53--61},
     publisher = {mathdoc},
     volume = {53},
     number = {4},
     year = {1993},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1993_53_4_a6/}
}
TY  - JOUR
AU  - V. V. Kurta
TI  - On the uniqueness of the Dirichlet problem of the mean curvature equation
JO  - Matematičeskie zametki
PY  - 1993
SP  - 53
EP  - 61
VL  - 53
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1993_53_4_a6/
LA  - ru
ID  - MZM_1993_53_4_a6
ER  - 
%0 Journal Article
%A V. V. Kurta
%T On the uniqueness of the Dirichlet problem of the mean curvature equation
%J Matematičeskie zametki
%D 1993
%P 53-61
%V 53
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1993_53_4_a6/
%G ru
%F MZM_1993_53_4_a6
V. V. Kurta. On the uniqueness of the Dirichlet problem of the mean curvature equation. Matematičeskie zametki, Tome 53 (1993) no. 4, pp. 53-61. http://geodesic.mathdoc.fr/item/MZM_1993_53_4_a6/

[1] Finn R., “On a problem of type with application to elleptic partial differential equations”, J. Rat. Mech. and Anal., 1954, no. 3, 789–799 | MR | Zbl

[2] Keller J. B., “On solution of $\Delta u=f(u)$”, Comm Pure Appl. Math., 10:4 (1957), 503–510 | DOI | MR | Zbl

[3] Osserman R., “On the inequality $\Delta u\ge f(u)$”, Pacific J. Math., 7:4 (1957), 1641–1647 | MR | Zbl

[4] Pokhozhaev S. I., “O kraevoi zadache dlya uravneniya $\Delta u=u^2$”, DAN SSSR, 140:3 (1961), 518–521

[5] Veron L., “Comportement asymptotique des solutions d$'$equations elliptiques semilineaires dans ${\mathbb R}^N$”, Ann. Math. Pura Appl., 127 (1981), 25–50 | DOI | MR | Zbl

[6] Veron L., “Singular solution of some nonlinear elliptic equation”, Nonlinear anal., 5:3 (1981), 225–249 | DOI | MR

[7] Brezis H., Veron L., “Removable singularities for some nonlinear elliptic equations”, Arch. for Rat. Mech. and Anal., 75:1 (1980), 1–6 | MR | Zbl

[8] Kondratev V. A., Landis E. M., “O kachestvennykh svoistvakh reshenii odnogo nelineinogo uravneniya vtorogo poryadka”, Matem. sb., 135(177):3 (1988), 346–360 | Zbl

[9] Kondratev V. A., Landis E. M., “Polulineinye uravneniya vtorogo poryadka s neotritsatelnoi kharakteristicheskoi formoi”, Matem. zametki, 44:3 (1988), 475–468

[10] Finn R., Ravnovesnye kapillyarnye poverkhnosti. Matematicheskaya teoriya, Mir, M., 1989

[11] Goldshtein V. M., Reshetnyak Yu. G., Vvedenie v teoriyu funktsii s obobschennymi proizvodnymi i kvazikonformnye otobrazheniya, Nauka, M., 1983

[12] Cheng S. Y., Yau S. T., “Differential equations on Riemannian manifolds and their geometric applications”, Comm. Pure and Appl. Math., 28:3 (1975), 333–354 | DOI | MR | Zbl

[13] Tkachev V. G., Vneshnee stroenie minimalnykh poverkhnostei parabolicheskogo tipa, Avtoref. diss. ...kand. fiz.-mat. nauk, Novosibirsk, 1990

[14] Serrin J., “Local behaviour of solutions of quasilinears equations”, Acta Math., 111 (1964), 247–302 | DOI | MR | Zbl

[15] Hwang J., “Comparision Principles and Liouville Theorems for Prescribed Mean Curvature Equations in Unbounded Domains”, Annali Scuola Norm. Sup. Pisa. Ser. 4, 15:3 (1988), 341–355 | MR | Zbl