Bidegree of graph and degeneracy number
Matematičeskie zametki, Tome 53 (1993) no. 4, pp. 13-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1993_53_4_a1,
     author = {O. V. Borodin},
     title = {Bidegree of graph and degeneracy number},
     journal = {Matemati\v{c}eskie zametki},
     pages = {13--20},
     publisher = {mathdoc},
     volume = {53},
     number = {4},
     year = {1993},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1993_53_4_a1/}
}
TY  - JOUR
AU  - O. V. Borodin
TI  - Bidegree of graph and degeneracy number
JO  - Matematičeskie zametki
PY  - 1993
SP  - 13
EP  - 20
VL  - 53
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1993_53_4_a1/
LA  - ru
ID  - MZM_1993_53_4_a1
ER  - 
%0 Journal Article
%A O. V. Borodin
%T Bidegree of graph and degeneracy number
%J Matematičeskie zametki
%D 1993
%P 13-20
%V 53
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1993_53_4_a1/
%G ru
%F MZM_1993_53_4_a1
O. V. Borodin. Bidegree of graph and degeneracy number. Matematičeskie zametki, Tome 53 (1993) no. 4, pp. 13-20. http://geodesic.mathdoc.fr/item/MZM_1993_53_4_a1/

[1] Garey M. R., Johnson D. S., “The complexity of near-optimal graph coloring”, J. Assoc. Comp. Mach., 1:2 (1976), 117–129 | MR | Zbl

[2] Finck H.-J., Sachs H., “Über eine von H.S.Wilf angegebene Schranke für die chromatische Zahl endlicher Graphen”, Math. Nachr., 39 (1969), 373–386 | DOI | MR | Zbl

[3] Sachs H., Einfürung in die Theorie der endlichen Graphen, Teil 1, Teubner, Leipzig, 1971

[4] Chartrand G., Mitchem J., “Graphical theorems of Nordhaus–Gaddum class”, Recent trends in graph theory, Springer, Berlin, 1971

[5] Catlin P. A., Embedding sugraphs and coloring of graphs under extremal degree conditions, Doctoral Thesis, Ohio State University, Ohio, 1976

[6] Nordhaus E. A., Gaddum J. W., “On complimentary graphs”, Amer. Math. Monthly, 63 (1956), 175–177 | DOI | MR | Zbl