$RD$-formulas and $W$-rings
Matematičeskie zametki, Tome 53 (1993) no. 1, pp. 95-103.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study rings over which any finitely presented module is a direct summand of a direct sum of cyclic cyclically presented modules (Warfield rings). We characterize these rings in matrix terms. We clarify a number of properties of Warfield rings including their complete characterization in some special cases. We prove the presence of special (deeper than $pp$) elimination of quantifiers in module theory over these rings.
@article{MZM_1993_53_1_a9,
     author = {G. E. Puninskii},
     title = {$RD$-formulas and $W$-rings},
     journal = {Matemati\v{c}eskie zametki},
     pages = {95--103},
     publisher = {mathdoc},
     volume = {53},
     number = {1},
     year = {1993},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1993_53_1_a9/}
}
TY  - JOUR
AU  - G. E. Puninskii
TI  - $RD$-formulas and $W$-rings
JO  - Matematičeskie zametki
PY  - 1993
SP  - 95
EP  - 103
VL  - 53
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1993_53_1_a9/
LA  - ru
ID  - MZM_1993_53_1_a9
ER  - 
%0 Journal Article
%A G. E. Puninskii
%T $RD$-formulas and $W$-rings
%J Matematičeskie zametki
%D 1993
%P 95-103
%V 53
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1993_53_1_a9/
%G ru
%F MZM_1993_53_1_a9
G. E. Puninskii. $RD$-formulas and $W$-rings. Matematičeskie zametki, Tome 53 (1993) no. 1, pp. 95-103. http://geodesic.mathdoc.fr/item/MZM_1993_53_1_a9/