Estimation of the spectral radius of an operator and the solvability of inverse problems for evolution equations
Matematičeskie zametki, Tome 53 (1993) no. 1, pp. 89-94
Voir la notice de l'article provenant de la source Math-Net.Ru
In a Banach space $E$ with reproducing cone $E_+$ consider the operator $B$ defined by the formula $Bf=l(uu_t)$, where $u(t)$ is a solution of the Cauchy problem $u_t-Au=\varPhi (t)f$, $t\in [0,T]$, $u(0)=0$, and the expression $l(u)$ has one of the following forms: $l(u)=u(t_1)$, $0$, or $l(u)=\int _0^T\nu (\tau)u(\tau )\,d\tau$ with $\nu\in L_1(0,T)$, $\nu\geqslant0$ on $[0,T]$. We prove the estimate $r(B)1$.
We obtain this estimate under the conditions that the $C_0$-semigroup generated by the operator $A$ is positive, compact, and of negative exponential type, and the operator function $\varPhi\in C^1([0,T];\mathscr L (E))$ is such that $l(\varPhi)=I$ and $\varPhi(t)\geqslant0$, $\varPhi'(t)\geqslant0$ on $[0,t]$. Correct solvability of the corresponding inverse problem follows from this estimate.
@article{MZM_1993_53_1_a8,
author = {A. I. Prilepko and A. B. Kostin},
title = {Estimation of the spectral radius of an operator and the solvability of inverse problems for evolution equations},
journal = {Matemati\v{c}eskie zametki},
pages = {89--94},
publisher = {mathdoc},
volume = {53},
number = {1},
year = {1993},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1993_53_1_a8/}
}
TY - JOUR AU - A. I. Prilepko AU - A. B. Kostin TI - Estimation of the spectral radius of an operator and the solvability of inverse problems for evolution equations JO - Matematičeskie zametki PY - 1993 SP - 89 EP - 94 VL - 53 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1993_53_1_a8/ LA - ru ID - MZM_1993_53_1_a8 ER -
%0 Journal Article %A A. I. Prilepko %A A. B. Kostin %T Estimation of the spectral radius of an operator and the solvability of inverse problems for evolution equations %J Matematičeskie zametki %D 1993 %P 89-94 %V 53 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_1993_53_1_a8/ %G ru %F MZM_1993_53_1_a8
A. I. Prilepko; A. B. Kostin. Estimation of the spectral radius of an operator and the solvability of inverse problems for evolution equations. Matematičeskie zametki, Tome 53 (1993) no. 1, pp. 89-94. http://geodesic.mathdoc.fr/item/MZM_1993_53_1_a8/