Estimation of the spectral radius of an operator and the solvability of inverse problems for evolution equations
Matematičeskie zametki, Tome 53 (1993) no. 1, pp. 89-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

In a Banach space $E$ with reproducing cone $E_+$ consider the operator $B$ defined by the formula $Bf=l(uu_t)$, where $u(t)$ is a solution of the Cauchy problem $u_t-Au=\varPhi (t)f$, $t\in [0,T]$, $u(0)=0$, and the expression $l(u)$ has one of the following forms: $l(u)=u(t_1)$, $0$, or $l(u)=\int _0^T\nu (\tau)u(\tau )\,d\tau$ with $\nu\in L_1(0,T)$, $\nu\geqslant0$ on $[0,T]$. We prove the estimate $r(B)1$. We obtain this estimate under the conditions that the $C_0$-semigroup generated by the operator $A$ is positive, compact, and of negative exponential type, and the operator function $\varPhi\in C^1([0,T];\mathscr L (E))$ is such that $l(\varPhi)=I$ and $\varPhi(t)\geqslant0$, $\varPhi'(t)\geqslant0$ on $[0,t]$. Correct solvability of the corresponding inverse problem follows from this estimate.
@article{MZM_1993_53_1_a8,
     author = {A. I. Prilepko and A. B. Kostin},
     title = {Estimation of the spectral radius of an operator and the solvability of inverse problems for evolution equations},
     journal = {Matemati\v{c}eskie zametki},
     pages = {89--94},
     publisher = {mathdoc},
     volume = {53},
     number = {1},
     year = {1993},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1993_53_1_a8/}
}
TY  - JOUR
AU  - A. I. Prilepko
AU  - A. B. Kostin
TI  - Estimation of the spectral radius of an operator and the solvability of inverse problems for evolution equations
JO  - Matematičeskie zametki
PY  - 1993
SP  - 89
EP  - 94
VL  - 53
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1993_53_1_a8/
LA  - ru
ID  - MZM_1993_53_1_a8
ER  - 
%0 Journal Article
%A A. I. Prilepko
%A A. B. Kostin
%T Estimation of the spectral radius of an operator and the solvability of inverse problems for evolution equations
%J Matematičeskie zametki
%D 1993
%P 89-94
%V 53
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1993_53_1_a8/
%G ru
%F MZM_1993_53_1_a8
A. I. Prilepko; A. B. Kostin. Estimation of the spectral radius of an operator and the solvability of inverse problems for evolution equations. Matematičeskie zametki, Tome 53 (1993) no. 1, pp. 89-94. http://geodesic.mathdoc.fr/item/MZM_1993_53_1_a8/