Regularity of solutions of linear and quasilinear equations of elliptic type in divergence form
Matematičeskie zametki, Tome 53 (1993) no. 1, pp. 68-82
Cet article a éte moissonné depuis la source Math-Net.Ru
We prove estimates in $C(D)$ and $L_p(D)$ and in Orlicz norms of solutions of the following linear and quasilinear equations: $$ \sum_{i,k=1}^n\frac\partial{\partial x_i}\biggl(a_{ik}(x)\frac{\partial u}{\partial x_k}\biggr)+\sum_{i=1}^n\frac\partial{\partial x_i}(b_i(x)u)+c(x)u=\sum_{i=1}^n\frac{\partial f^i}{\partial x_i} $$ and $$ \sum_{i=1}^n\frac\partial{\partial x_i}\bigl(a_i(x,u,\nabla u)\bigr)+h(x,u)=\sum_{i=1}^n\frac{\partial f^i}{\partial x_i}, $$ depending on the membership of the functions $c(x)$, $b_i(x)$ and $f^i(x)$ in various spaces $L_p(D)$. We write out explicitly the constants in the estimates obtained.
@article{MZM_1993_53_1_a6,
author = {F. I. Mamedov},
title = {Regularity of solutions of linear and quasilinear equations of elliptic type in divergence form},
journal = {Matemati\v{c}eskie zametki},
pages = {68--82},
year = {1993},
volume = {53},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1993_53_1_a6/}
}
F. I. Mamedov. Regularity of solutions of linear and quasilinear equations of elliptic type in divergence form. Matematičeskie zametki, Tome 53 (1993) no. 1, pp. 68-82. http://geodesic.mathdoc.fr/item/MZM_1993_53_1_a6/