An estimate of the curvature of the images of circles under maps given by convex univalent functions in a~disk
Matematičeskie zametki, Tome 53 (1993) no. 1, pp. 133-137.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the class $S^0_p$, $p=2,3,\dots$ , of holomorphic functions $f(z)=z+\sum_{n=1}^\infty c ^{(p)} _{np+1} z^{np+1}$ that are univalent in the disk $E=\{z:|z|1\}$, and that map $E$ onto convex domains that have the property of $p$-tuple symmetry of rotation with respect to the origin. We obtain sharp estimates for the curvature $$ K(w)=\frac1{\rho|f'(z)|}\operatorname{Re}\biggl\{1+\frac{(z-z_0)f''(z)}{f'(z)}\biggr\} $$ of images of the circles $\partial D_\rho=\{z\colon z=r_0+\rho e^{i\varphi},\ 0$ at the point $w=f(z)$, $z=r_0+\rho=r$, $0$.
@article{MZM_1993_53_1_a14,
     author = {S. M. Yugai},
     title = {An estimate of the curvature of the images of circles under maps given by convex univalent functions in a~disk},
     journal = {Matemati\v{c}eskie zametki},
     pages = {133--137},
     publisher = {mathdoc},
     volume = {53},
     number = {1},
     year = {1993},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1993_53_1_a14/}
}
TY  - JOUR
AU  - S. M. Yugai
TI  - An estimate of the curvature of the images of circles under maps given by convex univalent functions in a~disk
JO  - Matematičeskie zametki
PY  - 1993
SP  - 133
EP  - 137
VL  - 53
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1993_53_1_a14/
LA  - ru
ID  - MZM_1993_53_1_a14
ER  - 
%0 Journal Article
%A S. M. Yugai
%T An estimate of the curvature of the images of circles under maps given by convex univalent functions in a~disk
%J Matematičeskie zametki
%D 1993
%P 133-137
%V 53
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1993_53_1_a14/
%G ru
%F MZM_1993_53_1_a14
S. M. Yugai. An estimate of the curvature of the images of circles under maps given by convex univalent functions in a~disk. Matematičeskie zametki, Tome 53 (1993) no. 1, pp. 133-137. http://geodesic.mathdoc.fr/item/MZM_1993_53_1_a14/