An estimate of the curvature of the images of circles under maps given by convex univalent functions in a disk
Matematičeskie zametki, Tome 53 (1993) no. 1, pp. 133-137
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider the class $S^0_p$, $p=2,3,\dots$ , of holomorphic functions $f(z)=z+\sum_{n=1}^\infty c ^{(p)} _{np+1} z^{np+1}$ that are univalent in the disk $E=\{z:|z|<1\}$, and that map $E$ onto convex domains that have the property of $p$-tuple symmetry of rotation with respect to the origin. We obtain sharp estimates for the curvature $$ K(w)=\frac1{\rho|f'(z)|}\operatorname{Re}\biggl\{1+\frac{(z-z_0)f''(z)}{f'(z)}\biggr\} $$ of images of the circles $\partial D_\rho=\{z\colon z=r_0+\rho e^{i\varphi},\ 0 at the point $w=f(z)$, $z=r_0+\rho=r$, $0.
@article{MZM_1993_53_1_a14,
author = {S. M. Yugai},
title = {An estimate of the curvature of the images of circles under maps given by convex univalent functions in a~disk},
journal = {Matemati\v{c}eskie zametki},
pages = {133--137},
year = {1993},
volume = {53},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1993_53_1_a14/}
}
TY - JOUR AU - S. M. Yugai TI - An estimate of the curvature of the images of circles under maps given by convex univalent functions in a disk JO - Matematičeskie zametki PY - 1993 SP - 133 EP - 137 VL - 53 IS - 1 UR - http://geodesic.mathdoc.fr/item/MZM_1993_53_1_a14/ LA - ru ID - MZM_1993_53_1_a14 ER -
S. M. Yugai. An estimate of the curvature of the images of circles under maps given by convex univalent functions in a disk. Matematičeskie zametki, Tome 53 (1993) no. 1, pp. 133-137. http://geodesic.mathdoc.fr/item/MZM_1993_53_1_a14/