The best converging series in $L_p[0,2\pi]$
Matematičeskie zametki, Tome 52 (1992) no. 6, pp. 100-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1992_52_6_a11,
     author = {A. I. Rubinshtein},
     title = {The best converging series in $L_p[0,2\pi]$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {100--108},
     publisher = {mathdoc},
     volume = {52},
     number = {6},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1992_52_6_a11/}
}
TY  - JOUR
AU  - A. I. Rubinshtein
TI  - The best converging series in $L_p[0,2\pi]$
JO  - Matematičeskie zametki
PY  - 1992
SP  - 100
EP  - 108
VL  - 52
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1992_52_6_a11/
LA  - ru
ID  - MZM_1992_52_6_a11
ER  - 
%0 Journal Article
%A A. I. Rubinshtein
%T The best converging series in $L_p[0,2\pi]$
%J Matematičeskie zametki
%D 1992
%P 100-108
%V 52
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1992_52_6_a11/
%G ru
%F MZM_1992_52_6_a11
A. I. Rubinshtein. The best converging series in $L_p[0,2\pi]$. Matematičeskie zametki, Tome 52 (1992) no. 6, pp. 100-108. http://geodesic.mathdoc.fr/item/MZM_1992_52_6_a11/