Equivalent criterion of Haar and Franklin systems in symmetric spaces
Matematičeskie zametki, Tome 52 (1992) no. 3, pp. 96-101.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present article it is proved that if the Haar and Franklin systems are equivalent in a separable symmetric space $E$, the following condition holds: \begin{equation} 0\alpha_E\leqslant\beta_E1, \end{equation} where $\alpha_E$ and $\beta_E$ are the Boyd indices of the space $E$. It is already known that if condition (1) is fulfilled, it follows that the Haar and Franklin systems are equivalent in the space $E$. Thereby, this estabishes that condition (1) is necessary and sufficient for the equivalence of the Haar and Franklin systems in $E$. In proving the assertion a number of interesting constructions involving Haar and Franklin polynomials are presented and upper and lower bounds on the Franklin functions applied.
@article{MZM_1992_52_3_a9,
     author = {I. Ya. Novikov},
     title = {Equivalent criterion of {Haar} and {Franklin} systems in symmetric spaces},
     journal = {Matemati\v{c}eskie zametki},
     pages = {96--101},
     publisher = {mathdoc},
     volume = {52},
     number = {3},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1992_52_3_a9/}
}
TY  - JOUR
AU  - I. Ya. Novikov
TI  - Equivalent criterion of Haar and Franklin systems in symmetric spaces
JO  - Matematičeskie zametki
PY  - 1992
SP  - 96
EP  - 101
VL  - 52
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1992_52_3_a9/
LA  - ru
ID  - MZM_1992_52_3_a9
ER  - 
%0 Journal Article
%A I. Ya. Novikov
%T Equivalent criterion of Haar and Franklin systems in symmetric spaces
%J Matematičeskie zametki
%D 1992
%P 96-101
%V 52
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1992_52_3_a9/
%G ru
%F MZM_1992_52_3_a9
I. Ya. Novikov. Equivalent criterion of Haar and Franklin systems in symmetric spaces. Matematičeskie zametki, Tome 52 (1992) no. 3, pp. 96-101. http://geodesic.mathdoc.fr/item/MZM_1992_52_3_a9/