Equivalent criterion of Haar and Franklin systems in symmetric spaces
Matematičeskie zametki, Tome 52 (1992) no. 3, pp. 96-101
Cet article a éte moissonné depuis la source Math-Net.Ru
In the present article it is proved that if the Haar and Franklin systems are equivalent in a separable symmetric space $E$, the following condition holds: \begin{equation} 0<\alpha_E\leqslant\beta_E<1, \end{equation} where $\alpha_E$ and $\beta_E$ are the Boyd indices of the space $E$. It is already known that if condition (1) is fulfilled, it follows that the Haar and Franklin systems are equivalent in the space $E$. Thereby, this estabishes that condition (1) is necessary and sufficient for the equivalence of the Haar and Franklin systems in $E$. In proving the assertion a number of interesting constructions involving Haar and Franklin polynomials are presented and upper and lower bounds on the Franklin functions applied.
@article{MZM_1992_52_3_a9,
author = {I. Ya. Novikov},
title = {Equivalent criterion of {Haar} and {Franklin} systems in symmetric spaces},
journal = {Matemati\v{c}eskie zametki},
pages = {96--101},
year = {1992},
volume = {52},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1992_52_3_a9/}
}
I. Ya. Novikov. Equivalent criterion of Haar and Franklin systems in symmetric spaces. Matematičeskie zametki, Tome 52 (1992) no. 3, pp. 96-101. http://geodesic.mathdoc.fr/item/MZM_1992_52_3_a9/