Summation theorem for inductive dimensions
Matematičeskie zametki, Tome 52 (1992) no. 3, pp. 89-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

A bicompactum with $\dim=1$ and $\operatorname{ind}=\operatorname{Ind}=3$, whichis the union of three of its own closed subsets, each of which is one-dimensional in all senses, is constructed.
@article{MZM_1992_52_3_a8,
     author = {S. V. Kotkin},
     title = {Summation theorem for inductive dimensions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {89--95},
     publisher = {mathdoc},
     volume = {52},
     number = {3},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1992_52_3_a8/}
}
TY  - JOUR
AU  - S. V. Kotkin
TI  - Summation theorem for inductive dimensions
JO  - Matematičeskie zametki
PY  - 1992
SP  - 89
EP  - 95
VL  - 52
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1992_52_3_a8/
LA  - ru
ID  - MZM_1992_52_3_a8
ER  - 
%0 Journal Article
%A S. V. Kotkin
%T Summation theorem for inductive dimensions
%J Matematičeskie zametki
%D 1992
%P 89-95
%V 52
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1992_52_3_a8/
%G ru
%F MZM_1992_52_3_a8
S. V. Kotkin. Summation theorem for inductive dimensions. Matematičeskie zametki, Tome 52 (1992) no. 3, pp. 89-95. http://geodesic.mathdoc.fr/item/MZM_1992_52_3_a8/