Bianchi surfaces in $\mathbf{R}^3$ and deformation of hyperelliptic curves
Matematičeskie zametki, Tome 52 (1992) no. 3, pp. 78-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

New solutions of the problem of describing hyperbolic surfaces of specified negative Gaussian curvature are obtained. The answer is given in terms of 9 functions.
@article{MZM_1992_52_3_a7,
     author = {D. A. Korotkin and V. A. Reznik},
     title = {Bianchi surfaces in $\mathbf{R}^3$ and deformation of hyperelliptic curves},
     journal = {Matemati\v{c}eskie zametki},
     pages = {78--88},
     publisher = {mathdoc},
     volume = {52},
     number = {3},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1992_52_3_a7/}
}
TY  - JOUR
AU  - D. A. Korotkin
AU  - V. A. Reznik
TI  - Bianchi surfaces in $\mathbf{R}^3$ and deformation of hyperelliptic curves
JO  - Matematičeskie zametki
PY  - 1992
SP  - 78
EP  - 88
VL  - 52
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1992_52_3_a7/
LA  - ru
ID  - MZM_1992_52_3_a7
ER  - 
%0 Journal Article
%A D. A. Korotkin
%A V. A. Reznik
%T Bianchi surfaces in $\mathbf{R}^3$ and deformation of hyperelliptic curves
%J Matematičeskie zametki
%D 1992
%P 78-88
%V 52
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1992_52_3_a7/
%G ru
%F MZM_1992_52_3_a7
D. A. Korotkin; V. A. Reznik. Bianchi surfaces in $\mathbf{R}^3$ and deformation of hyperelliptic curves. Matematičeskie zametki, Tome 52 (1992) no. 3, pp. 78-88. http://geodesic.mathdoc.fr/item/MZM_1992_52_3_a7/