Bianchi surfaces in $\mathbf{R}^3$ and deformation of hyperelliptic curves
Matematičeskie zametki, Tome 52 (1992) no. 3, pp. 78-88
Cet article a éte moissonné depuis la source Math-Net.Ru
New solutions of the problem of describing hyperbolic surfaces of specified negative Gaussian curvature are obtained. The answer is given in terms of 9 functions.
@article{MZM_1992_52_3_a7,
author = {D. A. Korotkin and V. A. Reznik},
title = {Bianchi surfaces in $\mathbf{R}^3$ and deformation of hyperelliptic curves},
journal = {Matemati\v{c}eskie zametki},
pages = {78--88},
year = {1992},
volume = {52},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1992_52_3_a7/}
}
D. A. Korotkin; V. A. Reznik. Bianchi surfaces in $\mathbf{R}^3$ and deformation of hyperelliptic curves. Matematičeskie zametki, Tome 52 (1992) no. 3, pp. 78-88. http://geodesic.mathdoc.fr/item/MZM_1992_52_3_a7/