Convergence of subsequences of partial cubic sums of Fourier series in mean and almost everywhere
Matematičeskie zametki, Tome 52 (1992) no. 3, pp. 63-77.

Voir la notice de l'article provenant de la source Math-Net.Ru

Under certain assumptions on the regularity of a function $\Phi$ necessary and sufficient conditions are found for $\Phi$ under which the integrability of $\Phi(|f|)$ implies, for every function $f$ measurable on $T^d$, the existence of a subsequence of cubic sums of the Fourier series of $f$ that converges to f in mean or almost everywhere.
@article{MZM_1992_52_3_a6,
     author = {S. V. Konyagin},
     title = {Convergence of subsequences of partial cubic sums of {Fourier} series in mean and almost everywhere},
     journal = {Matemati\v{c}eskie zametki},
     pages = {63--77},
     publisher = {mathdoc},
     volume = {52},
     number = {3},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1992_52_3_a6/}
}
TY  - JOUR
AU  - S. V. Konyagin
TI  - Convergence of subsequences of partial cubic sums of Fourier series in mean and almost everywhere
JO  - Matematičeskie zametki
PY  - 1992
SP  - 63
EP  - 77
VL  - 52
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1992_52_3_a6/
LA  - ru
ID  - MZM_1992_52_3_a6
ER  - 
%0 Journal Article
%A S. V. Konyagin
%T Convergence of subsequences of partial cubic sums of Fourier series in mean and almost everywhere
%J Matematičeskie zametki
%D 1992
%P 63-77
%V 52
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1992_52_3_a6/
%G ru
%F MZM_1992_52_3_a6
S. V. Konyagin. Convergence of subsequences of partial cubic sums of Fourier series in mean and almost everywhere. Matematičeskie zametki, Tome 52 (1992) no. 3, pp. 63-77. http://geodesic.mathdoc.fr/item/MZM_1992_52_3_a6/