Convergence of subsequences of partial cubic sums of Fourier series in mean and almost everywhere
Matematičeskie zametki, Tome 52 (1992) no. 3, pp. 63-77
Cet article a éte moissonné depuis la source Math-Net.Ru
Under certain assumptions on the regularity of a function $\Phi$ necessary and sufficient conditions are found for $\Phi$ under which the integrability of $\Phi(|f|)$ implies, for every function $f$ measurable on $T^d$, the existence of a subsequence of cubic sums of the Fourier series of $f$ that converges to f in mean or almost everywhere.
@article{MZM_1992_52_3_a6,
author = {S. V. Konyagin},
title = {Convergence of subsequences of partial cubic sums of {Fourier} series in mean and almost everywhere},
journal = {Matemati\v{c}eskie zametki},
pages = {63--77},
year = {1992},
volume = {52},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1992_52_3_a6/}
}
S. V. Konyagin. Convergence of subsequences of partial cubic sums of Fourier series in mean and almost everywhere. Matematičeskie zametki, Tome 52 (1992) no. 3, pp. 63-77. http://geodesic.mathdoc.fr/item/MZM_1992_52_3_a6/