Solvability of convolution equation in the Gevrey class of functions analytic in a nonconvex region
Matematičeskie zametki, Tome 52 (1992) no. 3, pp. 35-43
Voir la notice de l'article provenant de la source Math-Net.Ru
In the Gevrey space $A(q)$ of functions analytic in a nonconvex bounded region in $\mathbf{C}^-$, we consider $a$ convolution operator $L$ generated by some entire functiona. A necessary and sufficient condition under which the equality $L(A(q))=A(q)$ holds is established.
@article{MZM_1992_52_3_a3,
author = {O. V. Gorina},
title = {Solvability of convolution equation in the {Gevrey} class of functions analytic in a nonconvex region},
journal = {Matemati\v{c}eskie zametki},
pages = {35--43},
publisher = {mathdoc},
volume = {52},
number = {3},
year = {1992},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1992_52_3_a3/}
}
TY - JOUR AU - O. V. Gorina TI - Solvability of convolution equation in the Gevrey class of functions analytic in a nonconvex region JO - Matematičeskie zametki PY - 1992 SP - 35 EP - 43 VL - 52 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1992_52_3_a3/ LA - ru ID - MZM_1992_52_3_a3 ER -
O. V. Gorina. Solvability of convolution equation in the Gevrey class of functions analytic in a nonconvex region. Matematičeskie zametki, Tome 52 (1992) no. 3, pp. 35-43. http://geodesic.mathdoc.fr/item/MZM_1992_52_3_a3/