Solvability of convolution equation in the Gevrey class of functions analytic in a nonconvex region
Matematičeskie zametki, Tome 52 (1992) no. 3, pp. 35-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the Gevrey space $A(q)$ of functions analytic in a nonconvex bounded region in $\mathbf{C}^-$, we consider $a$ convolution operator $L$ generated by some entire functiona. A necessary and sufficient condition under which the equality $L(A(q))=A(q)$ holds is established.
@article{MZM_1992_52_3_a3,
     author = {O. V. Gorina},
     title = {Solvability of convolution equation in the {Gevrey} class of functions analytic in a nonconvex region},
     journal = {Matemati\v{c}eskie zametki},
     pages = {35--43},
     publisher = {mathdoc},
     volume = {52},
     number = {3},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1992_52_3_a3/}
}
TY  - JOUR
AU  - O. V. Gorina
TI  - Solvability of convolution equation in the Gevrey class of functions analytic in a nonconvex region
JO  - Matematičeskie zametki
PY  - 1992
SP  - 35
EP  - 43
VL  - 52
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1992_52_3_a3/
LA  - ru
ID  - MZM_1992_52_3_a3
ER  - 
%0 Journal Article
%A O. V. Gorina
%T Solvability of convolution equation in the Gevrey class of functions analytic in a nonconvex region
%J Matematičeskie zametki
%D 1992
%P 35-43
%V 52
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1992_52_3_a3/
%G ru
%F MZM_1992_52_3_a3
O. V. Gorina. Solvability of convolution equation in the Gevrey class of functions analytic in a nonconvex region. Matematičeskie zametki, Tome 52 (1992) no. 3, pp. 35-43. http://geodesic.mathdoc.fr/item/MZM_1992_52_3_a3/