Equivalence of $K$-functional and modulus of smoothness of functions on the sphere
Matematičeskie zametki, Tome 52 (1992) no. 3, pp. 123-129
Cet article a éte moissonné depuis la source Math-Net.Ru
In the present note certain fundamental estimates of the constructive theory of functions on the sphere $S^n\subset\mathbf{R}^{n+1}$, $n\geqslant1$, are sharpened on the basis of the equivalence of the $K$-functional and the modulus of smoothness of functions. In particular a Bernshtein-type inequality for spherical polynomials is made more precise. The estimates obtained are applied to deduce a membership criterion for the function f $f\in L_p(S^n)$, $1\leqslant p\leqslant\infty$, to the space $H_r^{\omega}L_p(S^n)$ depending on the growth of the norm of derivatives of best approximation polynomials of the function $f$, which is an analog of a result found by S. B. Stechkin related to continuous periodic functions.
@article{MZM_1992_52_3_a13,
author = {Kh. P. Rustamov},
title = {Equivalence of $K$-functional and modulus of smoothness of functions on the sphere},
journal = {Matemati\v{c}eskie zametki},
pages = {123--129},
year = {1992},
volume = {52},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1992_52_3_a13/}
}
Kh. P. Rustamov. Equivalence of $K$-functional and modulus of smoothness of functions on the sphere. Matematičeskie zametki, Tome 52 (1992) no. 3, pp. 123-129. http://geodesic.mathdoc.fr/item/MZM_1992_52_3_a13/