Equivalence of $K$-functional and modulus of smoothness of functions on the sphere
Matematičeskie zametki, Tome 52 (1992) no. 3, pp. 123-129.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present note certain fundamental estimates of the constructive theory of functions on the sphere $S^n\subset\mathbf{R}^{n+1}$, $n\geqslant1$, are sharpened on the basis of the equivalence of the $K$-functional and the modulus of smoothness of functions. In particular a Bernshtein-type inequality for spherical polynomials is made more precise. The estimates obtained are applied to deduce a membership criterion for the function f $f\in L_p(S^n)$, $1\leqslant p\leqslant\infty$, to the space $H_r^{\omega}L_p(S^n)$ depending on the growth of the norm of derivatives of best approximation polynomials of the function $f$, which is an analog of a result found by S. B. Stechkin related to continuous periodic functions.
@article{MZM_1992_52_3_a13,
     author = {Kh. P. Rustamov},
     title = {Equivalence of $K$-functional and modulus of smoothness of functions on the sphere},
     journal = {Matemati\v{c}eskie zametki},
     pages = {123--129},
     publisher = {mathdoc},
     volume = {52},
     number = {3},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1992_52_3_a13/}
}
TY  - JOUR
AU  - Kh. P. Rustamov
TI  - Equivalence of $K$-functional and modulus of smoothness of functions on the sphere
JO  - Matematičeskie zametki
PY  - 1992
SP  - 123
EP  - 129
VL  - 52
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1992_52_3_a13/
LA  - ru
ID  - MZM_1992_52_3_a13
ER  - 
%0 Journal Article
%A Kh. P. Rustamov
%T Equivalence of $K$-functional and modulus of smoothness of functions on the sphere
%J Matematičeskie zametki
%D 1992
%P 123-129
%V 52
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1992_52_3_a13/
%G ru
%F MZM_1992_52_3_a13
Kh. P. Rustamov. Equivalence of $K$-functional and modulus of smoothness of functions on the sphere. Matematičeskie zametki, Tome 52 (1992) no. 3, pp. 123-129. http://geodesic.mathdoc.fr/item/MZM_1992_52_3_a13/