On spaces of Baire I functions over $K$-analytic spaces
Matematičeskie zametki, Tome 52 (1992) no. 3, pp. 108-116
Cet article a éte moissonné depuis la source Math-Net.Ru
Suppose that $\mathscr{F}$ is a relatively countably compact subset of $B_1(X)$, the space of Baire I functions over a $K$-analytic space $X$ equipped with the pointwise convergence topology. It is proved that (1) the closure of $\mathscr{F}$ is a strongly countably compact Frechйt–Urysohn space; (2) if $\mathscr{F}$ is $\aleph_1$-compact, $\mathscr{F}$ is a bicompactum; (3) if $X$ is a paracompact space, the closure of $\mathscr{F}$ is a bicompactum.
@article{MZM_1992_52_3_a11,
author = {E. G. Pytkeev},
title = {On spaces of {Baire} {I} functions over $K$-analytic spaces},
journal = {Matemati\v{c}eskie zametki},
pages = {108--116},
year = {1992},
volume = {52},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1992_52_3_a11/}
}
E. G. Pytkeev. On spaces of Baire I functions over $K$-analytic spaces. Matematičeskie zametki, Tome 52 (1992) no. 3, pp. 108-116. http://geodesic.mathdoc.fr/item/MZM_1992_52_3_a11/