On spaces of Baire I functions over $K$-analytic spaces
Matematičeskie zametki, Tome 52 (1992) no. 3, pp. 108-116.

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose that $\mathscr{F}$ is a relatively countably compact subset of $B_1(X)$, the space of Baire I functions over a $K$-analytic space $X$ equipped with the pointwise convergence topology. It is proved that (1) the closure of $\mathscr{F}$ is a strongly countably compact Frechйt–Urysohn space; (2) if $\mathscr{F}$ is $\aleph_1$-compact, $\mathscr{F}$ is a bicompactum; (3) if $X$ is a paracompact space, the closure of $\mathscr{F}$ is a bicompactum.
@article{MZM_1992_52_3_a11,
     author = {E. G. Pytkeev},
     title = {On spaces of {Baire} {I} functions over $K$-analytic spaces},
     journal = {Matemati\v{c}eskie zametki},
     pages = {108--116},
     publisher = {mathdoc},
     volume = {52},
     number = {3},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1992_52_3_a11/}
}
TY  - JOUR
AU  - E. G. Pytkeev
TI  - On spaces of Baire I functions over $K$-analytic spaces
JO  - Matematičeskie zametki
PY  - 1992
SP  - 108
EP  - 116
VL  - 52
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1992_52_3_a11/
LA  - ru
ID  - MZM_1992_52_3_a11
ER  - 
%0 Journal Article
%A E. G. Pytkeev
%T On spaces of Baire I functions over $K$-analytic spaces
%J Matematičeskie zametki
%D 1992
%P 108-116
%V 52
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1992_52_3_a11/
%G ru
%F MZM_1992_52_3_a11
E. G. Pytkeev. On spaces of Baire I functions over $K$-analytic spaces. Matematičeskie zametki, Tome 52 (1992) no. 3, pp. 108-116. http://geodesic.mathdoc.fr/item/MZM_1992_52_3_a11/