Verification of asymptotic solutions for one-dimensional nonlinear parabolic equations
Matematičeskie zametki, Tome 52 (1992) no. 3, pp. 10-16
Cet article a éte moissonné depuis la source Math-Net.Ru
The present article proves a result that is new for partial differential equations. According to this result, the solution of the Cauchy problem for a nonlinear parabolic equation with variable, slowly changing coefficients will turn into (asymptotically approach) a special asymptotic solution, either a solution or a kink, for high values of $t$.
@article{MZM_1992_52_3_a1,
author = {S. A. Vakulenko},
title = {Verification of asymptotic solutions for one-dimensional nonlinear parabolic equations},
journal = {Matemati\v{c}eskie zametki},
pages = {10--16},
year = {1992},
volume = {52},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1992_52_3_a1/}
}
S. A. Vakulenko. Verification of asymptotic solutions for one-dimensional nonlinear parabolic equations. Matematičeskie zametki, Tome 52 (1992) no. 3, pp. 10-16. http://geodesic.mathdoc.fr/item/MZM_1992_52_3_a1/