Convergence of variational characteristics
Matematičeskie zametki, Tome 52 (1992) no. 3, pp. 3-9.

Voir la notice de l'article provenant de la source Math-Net.Ru

A convergence condition for the values and solutions of a sequence of problems in the minimization of linearly disturbed convex functionals defined over nonreflexive spaces is presented. The result is applied to the averaging problem in an elastoplastic medium.
@article{MZM_1992_52_3_a0,
     author = {O. O. Barabanov},
     title = {Convergence of variational characteristics},
     journal = {Matemati\v{c}eskie zametki},
     pages = {3--9},
     publisher = {mathdoc},
     volume = {52},
     number = {3},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1992_52_3_a0/}
}
TY  - JOUR
AU  - O. O. Barabanov
TI  - Convergence of variational characteristics
JO  - Matematičeskie zametki
PY  - 1992
SP  - 3
EP  - 9
VL  - 52
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1992_52_3_a0/
LA  - ru
ID  - MZM_1992_52_3_a0
ER  - 
%0 Journal Article
%A O. O. Barabanov
%T Convergence of variational characteristics
%J Matematičeskie zametki
%D 1992
%P 3-9
%V 52
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1992_52_3_a0/
%G ru
%F MZM_1992_52_3_a0
O. O. Barabanov. Convergence of variational characteristics. Matematičeskie zametki, Tome 52 (1992) no. 3, pp. 3-9. http://geodesic.mathdoc.fr/item/MZM_1992_52_3_a0/