Phragmen–Lindelöf theorems for second-order semilinear equations with nonnegative characteristic form
Matematičeskie zametki, Tome 52 (1992) no. 1, pp. 62-67
Cet article a éte moissonné depuis la source Math-Net.Ru
This article considers the qualitative properties of generalized (in the sense of an integral identity) solutions of equations of the form $Lu=f(x,u)$, where $L$ is a second-order linear homogeneous divergence operator with nonnegative characteristic form and bounded measurable coefficients, while $f(x,u)$ is a locally bounded (in $\mathbf{R}^{n+1}$) function such that $f(x,0)=0$, $uf(x,u)\geqslant a|u|^{1+q}$, $a>0$, $q\geqslant0$, $n\geqslant2$. The results of the article are a characterization of the behavior of solutions to the Dirichlet problem for the equation $Lu=f(x,u)$ in unbounded domains as a function of the geometric properties of the domains and the quantity $0\leqslant q<1$. The apparatus of capacity characteristics plays a fundamental role in the approach used here.
@article{MZM_1992_52_1_a9,
author = {V. V. Kurta},
title = {Phragmen{\textendash}Lindel\"of theorems for second-order semilinear equations with nonnegative characteristic form},
journal = {Matemati\v{c}eskie zametki},
pages = {62--67},
year = {1992},
volume = {52},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1992_52_1_a9/}
}
V. V. Kurta. Phragmen–Lindelöf theorems for second-order semilinear equations with nonnegative characteristic form. Matematičeskie zametki, Tome 52 (1992) no. 1, pp. 62-67. http://geodesic.mathdoc.fr/item/MZM_1992_52_1_a9/