Criterion for $\pi$-supersolvability for finite groups
Matematičeskie zametki, Tome 52 (1992) no. 1, pp. 57-61
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved that the class of finite $\pi$-supersolvable groups is precisely the class of all finite $\pi$-solvable groups with the following property: For each maximal subgroup $M$ of a $\pi$-solvable group $G$ with index $p^{\alpha}$ for some $p\in\pi$, there exists a cyclic subgroup $S$ of order $p^{\beta}(\beta\geqslant\alpha)$ such that $G=MS$ and $S$ commutes with each element of the Sylow system $\Sigma_M$ of the subgroup $M$.
@article{MZM_1992_52_1_a8,
author = {N. M. Kurnosenko},
title = {Criterion for $\pi$-supersolvability for finite groups},
journal = {Matemati\v{c}eskie zametki},
pages = {57--61},
year = {1992},
volume = {52},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1992_52_1_a8/}
}
N. M. Kurnosenko. Criterion for $\pi$-supersolvability for finite groups. Matematičeskie zametki, Tome 52 (1992) no. 1, pp. 57-61. http://geodesic.mathdoc.fr/item/MZM_1992_52_1_a8/