Criterion for $\pi$-supersolvability for finite groups
Matematičeskie zametki, Tome 52 (1992) no. 1, pp. 57-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the class of finite $\pi$-supersolvable groups is precisely the class of all finite $\pi$-solvable groups with the following property: For each maximal subgroup $M$ of a $\pi$-solvable group $G$ with index $p^{\alpha}$ for some $p\in\pi$, there exists a cyclic subgroup $S$ of order $p^{\beta}(\beta\geqslant\alpha)$ such that $G=MS$ and $S$ commutes with each element of the Sylow system $\Sigma_M$ of the subgroup $M$.
@article{MZM_1992_52_1_a8,
     author = {N. M. Kurnosenko},
     title = {Criterion for $\pi$-supersolvability for finite groups},
     journal = {Matemati\v{c}eskie zametki},
     pages = {57--61},
     publisher = {mathdoc},
     volume = {52},
     number = {1},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1992_52_1_a8/}
}
TY  - JOUR
AU  - N. M. Kurnosenko
TI  - Criterion for $\pi$-supersolvability for finite groups
JO  - Matematičeskie zametki
PY  - 1992
SP  - 57
EP  - 61
VL  - 52
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1992_52_1_a8/
LA  - ru
ID  - MZM_1992_52_1_a8
ER  - 
%0 Journal Article
%A N. M. Kurnosenko
%T Criterion for $\pi$-supersolvability for finite groups
%J Matematičeskie zametki
%D 1992
%P 57-61
%V 52
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1992_52_1_a8/
%G ru
%F MZM_1992_52_1_a8
N. M. Kurnosenko. Criterion for $\pi$-supersolvability for finite groups. Matematičeskie zametki, Tome 52 (1992) no. 1, pp. 57-61. http://geodesic.mathdoc.fr/item/MZM_1992_52_1_a8/