On conjectures of Olsson, Brauer, and Alperin
Matematičeskie zametki, Tome 52 (1992) no. 1, pp. 32-35
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $G$ be a finite group, $p$ a prime number, $B$ a $p$-block of the group $G$, $k(B)$ the number of irreducible complex characters of $R$ belonging to $B$, $k_0(B)$ the number of irreducible characters of height zero in $B$, and let $D$ be the defect group of $B$. This article considers the relationship between Brauer's conjecture ($k(B)\leqslant|D|$), Olsson's conjecture ($k_0(B)\leqslant|D/D'|$), and Alperin's conjecture ($k_0(B)=k_0(\widetilde{B}$, where $\widetilde{B}$ is a $p$-block $N_G(D)$ such that $\widetilde{B}^G=B$). In particular, Olsson's conjecture is proved for $p$-blocks for those $p$-solvable groups $G$ for which a Hall $p'$-subgroup of the group $N_G(D)$ is either supersolvable or has odd order.
@article{MZM_1992_52_1_a4,
author = {P. G. Gres'},
title = {On conjectures of {Olsson,} {Brauer,} and {Alperin}},
journal = {Matemati\v{c}eskie zametki},
pages = {32--35},
year = {1992},
volume = {52},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1992_52_1_a4/}
}
P. G. Gres'. On conjectures of Olsson, Brauer, and Alperin. Matematičeskie zametki, Tome 52 (1992) no. 1, pp. 32-35. http://geodesic.mathdoc.fr/item/MZM_1992_52_1_a4/