On conjectures of Olsson, Brauer, and Alperin
Matematičeskie zametki, Tome 52 (1992) no. 1, pp. 32-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite group, $p$ a prime number, $B$ a $p$-block of the group $G$, $k(B)$ the number of irreducible complex characters of $R$ belonging to $B$, $k_0(B)$ the number of irreducible characters of height zero in $B$, and let $D$ be the defect group of $B$. This article considers the relationship between Brauer's conjecture ($k(B)\leqslant|D|$), Olsson's conjecture ($k_0(B)\leqslant|D/D'|$), and Alperin's conjecture ($k_0(B)=k_0(\widetilde{B}$, where $\widetilde{B}$ is a $p$-block $N_G(D)$ such that $\widetilde{B}^G=B$). In particular, Olsson's conjecture is proved for $p$-blocks for those $p$-solvable groups $G$ for which a Hall $p'$-subgroup of the group $N_G(D)$ is either supersolvable or has odd order.
@article{MZM_1992_52_1_a4,
     author = {P. G. Gres'},
     title = {On conjectures of {Olsson,} {Brauer,} and {Alperin}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {32--35},
     publisher = {mathdoc},
     volume = {52},
     number = {1},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1992_52_1_a4/}
}
TY  - JOUR
AU  - P. G. Gres'
TI  - On conjectures of Olsson, Brauer, and Alperin
JO  - Matematičeskie zametki
PY  - 1992
SP  - 32
EP  - 35
VL  - 52
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1992_52_1_a4/
LA  - ru
ID  - MZM_1992_52_1_a4
ER  - 
%0 Journal Article
%A P. G. Gres'
%T On conjectures of Olsson, Brauer, and Alperin
%J Matematičeskie zametki
%D 1992
%P 32-35
%V 52
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1992_52_1_a4/
%G ru
%F MZM_1992_52_1_a4
P. G. Gres'. On conjectures of Olsson, Brauer, and Alperin. Matematičeskie zametki, Tome 52 (1992) no. 1, pp. 32-35. http://geodesic.mathdoc.fr/item/MZM_1992_52_1_a4/