Remarks on a parametric representation of Nevanlinna--Dzhrbashyan classes
Matematičeskie zametki, Tome 52 (1992) no. 1, pp. 128-140
Voir la notice de l'article provenant de la source Math-Net.Ru
This article presents a parametric representation for classes of functions f that are holomorphic in the unit disk and such that
$$
\int_{|\xi|1}(1-|\xi|)^{\alpha-1}\log^+|f(\xi)|dm_2(\xi)+\infty \quad (\alpha>0).
$$
Here $m_2$ is the flat Lebesque measure.
@article{MZM_1992_52_1_a17,
author = {F. A. Shamoyan},
title = {Remarks on a parametric representation of {Nevanlinna--Dzhrbashyan} classes},
journal = {Matemati\v{c}eskie zametki},
pages = {128--140},
publisher = {mathdoc},
volume = {52},
number = {1},
year = {1992},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1992_52_1_a17/}
}
F. A. Shamoyan. Remarks on a parametric representation of Nevanlinna--Dzhrbashyan classes. Matematičeskie zametki, Tome 52 (1992) no. 1, pp. 128-140. http://geodesic.mathdoc.fr/item/MZM_1992_52_1_a17/